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Overview

This lecture note is an informal guide to various statistical tools used in applied microe-
conomics. The main goal of this lecture note is to provide students a brief summary of
microeconometric methods that are discussed frequently in various reading groups. The cur-
rent first-year economics sequence at UCSB provides a good foundation on microeconomic
theory, macroeconomic theory, and regression analysis. However, students are not exposed
to econometric estimation methods until their second year, and they would not have learned
regression discontinuity until the end of their second year if the course is taught in the spring
quarter.

Some would argue that the inner workings of these methods are difficult to understand,
and they would not be truly comprehensible unless you finish the first-year PhD sequence.
However, I beg to differ. While the mathematical derivations of these methods may be
difficult to understand, the reasons why we use them are not so difficult to comprehend.
And I believe that studying these methods as early as one can comprehend them would
allow students to start thinking about research questions even in their first and second
years.

Given this lecture note is designed to be covered in two 90-minute sessions, it will lack in
substance and detail. I hope that the main takeaway is contextualization. I am sure students
will learn most of the methods discussed in this lecture note again in detail, and I hope that
the narrative provided in this lecture note will help them understand the methods much
faster.

The narrative that worked best for me in understanding a series of statistical methods is the
story of “counterfactuals.” We start with the best-case scenario where we use the control
group as the proxy for the counterfactual of the treated group; that is, in a randomized

∗The material posted on this note is for personal use only and is not intended for reproduction, distribu-
tion, or citation.
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experiment, the treated group would have behaved like the untreated group in a counterfac-
tual world where the treated group did not receive treatment. However, in cases where we
cannot randomly assign treatment to units, this assumption may not hold. We have to start
making different assumptions about the counterfactual of the treated group. In the absence
of treatment, would the treated group have behaved like the control group, if their other ob-
served characteristics are similar? If the control group looks very different from the treated
group, can we perhaps construct a “synthetic control” that can serve as a counterfactual for
the treated group?

The statistical methods discussed in this lecture note are designed by scholars who pursued
ways to estimate a causal treatment effect when we could make strong assumptions about
the counterfactual outcomes. We will start with the randomized controlled trials and dis-
cuss other models such as the instrumental variables estimation, the difference-in-differences
estimation, all the way to the synthetic control method.

1 Randomized Controlled Trials

Suppose I want to measure the effect of drinking coffee on my blood pressure.
In an ideal world, I could have myself in a cloned universe drink coffee, measure
the increase in blood pressure, and compare that with myself who did not drink
coffee. But unfortunately, in reality, if I drink coffee, I can only observe myself
un-caffeinated before drinking coffee and caffeinated after drinking coffee – I cannot
observe myself how I would have been had I not drank coffee. We can never observe
the counterfactual outcome, and we have to make certain assumptions about the
counterfactual outcome if we want to estimate a causal effect of some treatment.
Comparing the values before and after does not identify the treatment effect for
obvious reasons, although people make this mistake everyday.

Then what can we do to estimate a causal effect of some treatment? Ideally, we want
to estimate the causal treatment effect for every individual, but this seems impossible.
Instead, we can try to estimate the treatment effect on average by randomly assigning
units into the treated group and the control group, like lab rats. Because the act of
randomization can eliminate self-selection and therefore the selection bias that could
have resulted from it, we can assume that the counterfactual outcome of the treated
group would be the outcome of the control group in expectation. This intuitive way of
estimating a causal effect is called the randomized controlled trials (RCT).a

aThis experimental design is analogous to “A/B testing” or a “lab experiment” where the scientist
divides the sample into two groups randomly, provides treatment to only one group, and compare the
outcomes from the two groups.

1.1 Assumptions

There are strong assumptions to be made.
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1. No selection bias

2. SUTVA

Selection bias is the bias introduced when individuals self-select into one of the groups,
rendering the groups to be not properly randomized. We’ll discuss it again later.

SUTVA stands for Stable Unit Treatment Value Assumption. This assumption implies no
interference, no spillover effects, and every unit getting the same dose of treatment.

1.2 The Rubin causal model

In this section, I will use the notations introduced by Rubin (1974), often referred to as
the potential outcomes framework. Another commonly used notation (which we won’t use
here) is from the latent variable models, which are often addressed in classic econometrics
textbooks.

Imagine a setting with N individuals i = 1, . . . , N , drawn randomly from a population. We
want to estimate the effect of a binary treatment variable Di on Yi. Di takes the value of 1
if the individual i receives treatment, and 0 otherwise.

For each individual, there are two potential outcomes, which are the following:

• Yi(0): potential outcome for i if i is not treated

• Yi(1): potential outcome for i if i is treated

It is important to note that for any individual in the sample, only one outcome is observed.
For the treated individual i, we can only observe Yi(1). For the untreated individual i, we can
only observe Yi(0). The observed data for each individual, Yi, would then be the following:

Yi = DiYi(1) + (1−Di)Yi(0).

Let’s start from the ideal parameter of interest. The causal effect of treatment D on outcome
Y for individual i we’d ideally want to estimate is

τi := Yi(1)− Yi(0).

Note that this is for each individual i. However, because we can never observe both Yi(0)
and Yi(1) for any individual i, we would never be able to estimate this treatment effect of
interest. Does this mean we can’t know anything about the treatment effect?

Let’s not give up our hope yet. This was supposed to be a challenging parameter to recover
anyways. Let us think for a moment what this means in real life. Suppose you take a pill
because you have a fever. Have you ever wondered whether it will actually reduce the fever?
What if your fever was about to go away but you took the pill and you’re giving all the credit
to the pill? Suppose you took the same pill ten years ago when you were much younger and
your fever went away. Should you increase your dose if you want the same effect now? What
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if you’re on different medication now? What if you gained a lot more weight in the last ten
years? What if you are on a different diet living in a different climate now?

You don’t know what exactly is going to happen, but you take the pill anyways. Perhaps
it’s because we assume that the pill will have the effect of reducing fever on average. Sure,
the treatment effect may vary slightly even on the same individual, but we’re willing to take
the pill if it’s suppose to reduce fever on average.

That being said, we may be interested in estimating the average treatment effect in some
situations. A policy may have heterogeneous effects on individuals, but we would pursue this
policy if it has a positive treatment effect on average. Let us call this parameter an average
treatment effect (ATE), defined as follows:

τATE := E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)].

Let us go back to our observed data. We observe Yi. We observe Yi(1) for the treated and
Yi(0) for the untreated, but we do not observe both for any individual in our data. Let us
start from another treatment parameter and work our way up to the parameter of interest,
τATE. Let

τD := E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0],

which simply indicates a difference in group means. We can rewrite it as

τD = E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0]

= E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0] + (E[Yi(0)|Di = 1]− E[Yi(0)|Di = 1])

= (E[Yi(1)|Di = 1]− E[Yi(0)|Di = 1]) + E[Yi(0)|Di = 1]− E[Yi(0)|Di = 0]

= E[Yi(1)− Yi(0)|Di = 1] + (E[Yi(0)|Di = 1]− E[Yi(0)|Di = 0]),

where the first term is the average treatment effect for the treated (ATT), and the second
term is the selection bias (take some time to check each term).

We now have two questions to be answered:

1. E[Yi(1)− Yi(0)|Di = 1]: Can this term be equal to E[Yi(1)− Yi(0)]?

2. E[Yi(0)|Di = 1]− E[Yi(0)|Di = 0]: Can this term be equal to zero?

This is where our “randomized” assignment comes into play. The assumption of random
assignment can be written as the following:

(Y (0), Y (1)) ⊥⊥ D

which means that treatment assignment is independent of potential outcomes. Random
assignment also implies that there is no self-selection, making the second term zero. Thus,
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we have the following:

τD = E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0]

= E[Yi(1)− Yi(0)|Di = 1] + (E[Yi(0)|Di = 1]− E[Yi(0)|Di = 0])

= E[Yi(1)− Yi(0)]

≡ ATE.

In other words, with the assumption of random assignment and SUTVA, the average treat-
ment effect is identified, and we can estimate the ATE by calculating the difference in group
means, τD.

1.3 How to design a randomized controlled experiment

One way to design an experiment such that the assumptions of random assignment and
SUTVA are satisfied is to ensure that there is no spillover within the sample. If we want to
estimate the effect of, let’s say, cash transfer to individuals, then we have to think carefully
about ways in which the treated individuals can influence the decisions of the untreated
individuals.

Another way is to estimate this potential spillover effect. We can design the experiment such
that the first group (the truly untreated) receives neither the treatment nor the spillovers,
the second group does not receive treatment but receives spillovers, and the third group (the
treated) receives treatment.

1.4 Things to consider next

In this abridged lecture note, I do not discuss other important issues in randomized controlled
trials. Here are some of the important things to study if interested in learning more about
RCT:

1. Selection on observables, stratification, balance tests

2. The case of incomplete compliance, the intention-to-treat (ITT) estimation, and LATE

3. Power calculation
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2 Instrumental Variables (IV) Estimation

2.1 Motivation

As we have seen earlier, randomized controlled trials are the gold-standard for examining
causal relationships between variables. However, running such experiments can be very
expensive, and it can take a very long time to finish. In some cases, running randomized
experiments may simply not be possible. Here is a common example. Suppose we want to
estimate the effect of smoking on health. How do we design an experiment such that we
only examine the causal effect of smoking on health, and not the other way around? The
big assumption we make when we run a regression is that the independent variable is not
correlated with the error term. If there is an omitted variable such as depression that can
affect both smoking and health, then the OLS regression will not estimate the causal effect
of smoking on health. What can we do to isolate the causal effect of smoking on health?

Let me describe what was said above using some math. In a simple linear regression model,
we have

Y = Dβ + U, (1)

where Y and U are n-by-1 vectors of an outcome variable and an error term, respectively,
and D is a n-by-k matrix where every column is a treatment variable. β is a k-by-1 vector
of coefficients. By construct, the model estimates the coefficient vector β that optimizes the
following objective function:

β̂ = argmax
β

(Y −Dβ)′(Y −Dβ),

whose first-order condition is D′(Y −Dβ̂) = D′Û = 0. Again, this OLS estimation by design

results in β̂ such that Cov(X, Û) = 0. Thus, if there is reason to believe that Cov(X, Û) ̸= 0
(e.g. depression can affect both smoking and health), then the model would not estimate
the causal effect of D on Y , but rather, it would be picking up values that would make the
error term appear to be uncorrelated with the treatment variables.

2.2 Classical IV model

To overcome the issue of endogenous treatment variables, we use the method of instrumental
variables (IV). The goal is to use an instrumental variable (“instrument”) that is related to
the treatment variable (smoking) but not related to the error term to estimate the causal
effect of smoking on health. These two conditions are called the following:

1. Relevance: The instrument is related to the independent variable.

2. Exclusion Restriction: The instrument can affect the outcome variable only through
the independent variable. In other words, the instrument cannot directly affect the
outcome.
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One good instrument in our example is the tax rate for tobacco products. The tobacco tax
rate is related to smoking, and it is reasonable to assume that it is related to health only
through its effect on smoking.

The classical IV model assumes no heterogeneity, which makes this model rather restrictive:
it implies linearity and constant treatment effects. Yet it is important to study this classical
model, because 1) the researchers still use the estimators from this model, and 2) it can be
used to justify the needs for a model with heterogeneity and nonlinearity.

2.2.1 Exact Point Identification

Let us first look at the “just identified” case. Suppose we have exactly the same number of
instruments Z as the number of treatment variables D. If we pre-multiply the simple linear
regression (Equation 1) by Z, we get

Z ′Y = Z ′Dβ + Z ′U,

where Z is an n-by-k matrix where each column is an instrument. Recall the two assumptions
that instruments satisfy:

1. Relevance: E[Z ′D]

2. Exclusion restriction: E[ZU ] = 0

If we apply the OLS to the result, we obtain

β̂JIIV = (Z ′D)−1Z ′Y.

2.2.2 Overidentification

What if we have more instruments than treatment variables (dZ > dD)? In this fortunate
case of having an overidentified model, however, we have to come up with a way to select
only dD out of the dZ instruments. One simple way would be to just randomly select dD
instruments at the expense of loss in precision. A better way would be to use dD linear
combinations of the instruments. In other words, we could project the columns of D onto
the column space of the instruments to minimize the loss, as we would be obtaining the
linear combinations of the instruments that are closest to the treatment variables. In linear
algebra, this would be pre-multiplying by Z(Z ′Z)−1Z ′:

Z(Z ′Z)−1Z ′Y = Z(Z ′Z)−1Z ′Dβ + Z(Z ′Z)−1Z ′U.

Then applying the OLS yields

β̂ = (D′Z(Z ′Z)−1Z ′D)−1D′Z(Z ′Z)−1Z ′Y. (2)
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2.2.3 Two-Stage Least Squares

You may then wonder why we often refer to this estimator as the two-stage least squares
estimator. Let D̂ = Z(Z ′Z)−1Z ′D. Then we can rewrite the expression 2 as

β̂ = (D′Z(Z ′Z)−1Z ′D)−1D′Z(Z ′Z)−1Z ′Y

= (D′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′D)−1D′Z(Z ′Z)−1Z ′Y

=
(
D̂′D̂

)−1

D̂′Y.

If we look closely, D̂ is an n × k matrix of predicted values from the regression of D on
Z (first-stage). The estimator above can then be obtained by regressing Y on D̂ (second-
stage). Thus, the estimator is often referred to as the two-stage least squares (TSLS or
2SLS) estimator.

2.3 Modern IV model

The modern view does not assume constant treatment effects for all individuals. It allows
for heterogeneity in β. However, as it now matters to which individuals the instrument has
an impact, we should be more careful about interpreting the results. More importantly,

Then if the instrument (Z) and the treatment (D) are both binary, then

βIV =
Cov(Y, Z)

Cov(Y, Z)
=

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
.

Imbens and Angrist (1994) provide conditions that would allow for easier interpretation of
βIV . First, we need the following assumptions:

1. Exogeneity: Z ⊥⊥ (D(0), D(1), Y (0), Y (1))

2. Relevance: Cov(D,Z) ̸= 0

3. Monotonicity: D(1) ≥ D(0) or D(1) ≤ D(0) ∀i

Under these assumptions, βIV would estimate the local average treatment effect (LATE):

βIV =
Cov(Y, Z)

Cov(Y, Z)
=

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]

= E[Y (1)− Y (0)|D(1) = 1, D(0) = 0]

= LATE,

where LATE is an average treatment effect for the compliers: those who would receive
treatment if and only if they are assigned to the treated group.
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3 Difference-in-Differences Estimation

3.1 Motivation

Many interesting research questions often require some sort of panel data to be answered
properly. How does financial assistance affect college enrollment? Does a policy increase
an outcome variable of interest? To address these questions, we would need to track how
individuals or firms make their decisions over time. Suppose we obtain a panel data; that
is, a dataset that includes observations of the same units over multiple time periods. What
estimator would you now use to estimate the effect?

A naive approach that resembles the RCT design is to use the before-and-after difference
estimator. We simply take the difference between the average outcome of the treated group
before and after the treatment:

τ d = E[Yt1(1)–Yt0(0)|D = 1],

where D = 1 is the treated group, t1 is the time period after treatment, and t0 is the time
period before treatment. Yt1(1) is the outcome of the treated after treatment and Yt0(0) is
the outcome of the treated before treatment.

The identifying assumption here is that the outcome would remain unchanged in the absence
of treatment; that is, the outcome would not have changed at all (on average) in the counter-
factual scenario where the treated group did not receive treatment. With this assumption,
the estimator would yield an average treatment effect for the treated (ATET):

τ d = E[Yt1(1)− Yt0(0)|D = 1]

= E[Yt1(1)− Yt1(0)|D = 1] + E[Yt1(0)− Yt0(0)|D = 1]

= ATET + counterfactual change of the treated

The identifying assumption implies that the second term is zero. Note that Yt1(0)|D = 1
that was subtracted from and added to the first term and the second term, respectively, is
not observed: it is the counterfactual outcome of the treated after treatment if they were not
treated. Thus, this assumption cannot be tested. But do you buy this assumption? Suppose
colleges in some states started a financial assistance program. College enrollment in these
states could have changed without this program, and we cannot assume that any change in
enrollment before and after the program is solely due to the financial assistance program.
Because this difference estimator captures both the treatment effect and the counterfactual
trend, we cannot use this estimator unless we can somehow persuade the audience that the
counterfactual trend is very likely to be zero.

3.2 Difference-in-Differences Estimator

This is where the difference-in-differences estimator comes in. This estimator is an attempt
to estimate the counterfactual trend for the treated using the trend for the control group.
The difference-in-differences estimator can be written as

τDID = E[Yt1(1)− Yt0(0)|D = 1]− E[Yt1(0)− Yt0(0)|D = 0],
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where D = 1 is the treated group, t1 is the time period after treatment, and t0 is the time
period before treatment. The critical identifying assumption here is that the observed trend
in the outcome of the control group is identical to the counterfactual trend of the treated:

τDID = E[Yt1(1)− Yt0(0)|D = 1]− E[Yt1(0)− Yt0(0)|D = 0]

= E[Yt1(1)− Yt1(0)|D = 1] + E[Yt1(0)− Yt0(0)|D = 1]− E[Yt1(0)− Yt0(0)|D = 0]

= ATET + counterfactual trend of the treated− observed trend of the control group

With the identifying assumption, the second term and the third term cancel out. This
assumption is referred to as the parallel trends assumption (PTA). The DID estimation with
this assumption removes the parallel time trends, capturing only the treatment effect.

3.3 Assumptions

Two main assumptions of the DID estimator are:

1. Parallel Trends Assumption: The treated group and the control group have parallel
trends before treatment.

2. No Concurrent Changes: There are no other changes to the treated group at the time
of treatment.

To check whether the first assumption (PTA) can be valid, we can check trends of the treated
and the control before treatment. If the pre-treatment trends are completely off between
the treated and the control, then it becomes difficult to argue that the PTA is valid. If the
trends are very similar, then it is likely that the PTA is valid (read the “Notes” section).
However, remember that these identifying assumptions are assumptions: we cannot prove
whether they hold.

3.4 Difference-in-Differences as a Regression

Let It1 be an indicator variable that takes 1 if t = t1 and 0 if t = t0. Let Di be an indicator
variable that takes 1 if the individual i is treated and 0 if the individual is untreated. Then
the difference-in-differences regression model is

Yit = β0 + β1It1 + β2Di + δDi · It1 + εt.

Let us see how each potential outcome is estimated in this framework and how ATT is
estimated. The expectation of each potential outcome is

E[Yt1(1)|D = 1] = β0 + β1 + β2 + δ

E[Yt0(0)|D = 1] = β0 + β2

E[Yt1(0)|D = 0] = β0 + β1

E[Yt0(0)|D = 0] = β0.

Then τDID ≡ E[Yt1(1)− Yt0(0)|D = 1]− E[Yt1(0)− Yt0(0)|D = 0] = δ.
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3.5 Notes

1. The conventional way of checking parallel trends is doing an “eyeball” test. But beware
that an eyeball test is not the most reliable way, as the trends may look similar or
different depending on how much the figure is zoomed in.

2. The difference-in-differences estimation is quite straightforward, and the textbook 2×2
DID case makes a lot of sense. However, DID can get complicated very quickly with
multiple treatment groups and multiple treatment periods/stages. A general term for
a design that handles multiple treatments is called “event studies.” I decided not to
cover the general design here due to the interest of time, but I will try to include it in
the next version if there is a high demand for it.
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4 Matching Methods

4.1 Motivation

Recall that the RCT design makes a strong assumption that the outcome variable is inde-
pendent of the treatment variable: (Y1, Y0) ⊥⊥ D. However, if we do not have the luxury
of running a field experiment that could effectively divide the sample randomly into the
treatment group and the control group, we cannot rely on this assumption. In fact, this
assumption is rarely satisfied in the observed data. Suppose we want to estimate the effect
of a federally funded job training program on earnings. It is difficult to argue that treatment
assignment is random (what are some reasons?).

But what if treatment assignment is random conditional on observable characteristics Xi?
Continuing with the example above, we know that people self-select into a job training pro-
gram, and the likelihood of completing the training program and its effect may depend on
individuals’ education levels and other characteristics. If we can observe these characteris-
tics and believe that treatment assignment is random across trained workers and untrained
workers with the same observed characteristics, then we can compare the same “kind” of
people with or without job training.

4.2 Assumption

If we believe that treatment assignment is random conditional on observables, i.e.

(Y1, Y0) ⊥⊥ D|X,

then we can estimate the following conditional treatment effect:

τ(x) = E[Y1i − Y0i|X = x].

In other words, we are matching individuals in the treated group with individuals in the
control group based on their characteristics. Formally, this matching estimator relies on two
strong assumptions:

1. Conditional Independence Assumption (CIA): (Y1, Y0) ⊥⊥ D|X

2. Common Support Assumption (CSA): 0 < Pr(D = 1|X = x) ≡ p(x) < 1 ∀x

CIA requires that treatment assignment is random once we have conditioned on observed
characteristics. This means that there is no selection on unobservables. However, because
we cannot observe unobservables, this assumption is not testable.

CSA states that every point x ∈ X must have both treated and untreated observations. This
assumption is straightforward – if we want to match a treated individual with an untreated
individual with the same characteristics, there should be an untreated counterpart. This
assumption is testable.
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4.3 Matching Methods

4.3.1 The Cell Estimator

Let us start with a simple method. We divide the data into multiple cells where each cell
would take one value from each observable. For example, suppose we have one observed
characteristic, which is the level of education. Let X = 1 if the person does not have a high
school degree, X = 2 if the person has a high school degree, X = 3 if the person has a college
degree, and X = 4 if the person has a higher degree than college. We put the data into each
cell of X. Then for every value of X, we calculate the difference in means. We compute a
weighted average of these differences. Formally, it would be

δ̂ =
∑
x∈X

ωxδ̂x,

where ωx is the proportion of the sample that takes the value of x. Note that we did not make
any assumption about a parametric functional form of the observed characteristics, making
this a non-parametric estimator. In other words, we are simply calculating the weighted
average of these differences based on their proportions without making an assumption about,
say, a linear effect of education on earnings.

4.3.2 Other Exact Matching Methods

You may then wonder, what if we have more observed characteristics to worry about ({Xj}Jj=1

where J is large)? What if X is continuous? Then we may end up with some cells that do
not have any untreated worker.

The following methods can be used in such situations:

1. Bandwidth matching

2. Nearest k-neighbor matching

3. Stratified matching

These methods are rather straightforward. First, bandwidth matching is where a treated
worker with X = x is matched with untreated workers within bandwidth h, which have
X ∈ [x− h, x + h]. Second, nearest k-neighbor matching would involve matching a treated
worker with k untreated workers that have the closest values from X = x. Third, stratified
matching is dividing the entire sample into n mutually exclusive groups.

These methods provide clear instructions on how treated individuals are matched with un-
treated counterparts. However, they suffer from the dimensionality problem. If we want
to condition on several observables, and if they take several values, will the sample be big
enough to cover all the combinations of these values? If we want to reduce the number of
values by grouping them (categorizing education level into degree rather than number of
years), how many groups should I make, and are these groupings justifiable?

Because of this issue, researchers have recently used matching based on propensity scores.
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4.4 Propensity Score Matching (PSM)

The CIA states that (Y1, Y0) ⊥⊥ D|X. How would CIA look for matching based on propensity
scores? Rosenbaum and Rubin (1983) show that

(Y1, Y0) ⊥⊥ D|X −→ (Y1, Y0) ⊥⊥ D|p(x),

where p(x) = Pr(D = 1|X = x) is the propensity score. Rosenbaum and Rubin use the
law of iterated expectations and the CIA to prove the theorem. Using this theorem, we can
match on a single variable instead of conditioning on all the observed characteristics X. This
feature removes the dimensionality problem raised earlier. The trick here is to estimate the
propensity score p(x) correctly.

There are several ways to estimating the propensity score. We can use nonparametric meth-
ods such as cell estimators, or use parametric methods such as a linear probability model,
logit, and probit.

4.4.1 Estimating the propensity score p(x)

1. Nonparametric Cell Estimators

This estimation method does not rely on a parametric assumption about the relation-
ship between the propensity score and the observed characteristics. For each value
x ∈ X of the observed characteristics, we estimate the propensity score by calculating
the proportion of observations that are treated:

p(x) =
nx,D=1

nx

2. Linear Probability Model

This parametric estimation assumes linear probability in treatment as a function of
the observed characteristics X:

Pr(D = 1|X) = Xβ.

This can be estimated via OLS. The coefficients represent the marginal effect of X
on the probability of treatment, which makes the model easy to interpret. However,
this estimation method suffers from one critical drawback, which is that the predicted
probabilities are not bound between [0, 1].

3. Logit and Probit

To overcome the issue of out-of-bound predicted probabilities, we can model the con-
ditional probability such that the predicted values are bound between 0 and 1.

• Logit: Pr(D = 1|X) =
eXβ

1 + eXβ
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• Probit: Pr(D = 1|X) = Φ(Xβ)

These functions on the right-hand side are CDFs, which are bound between 0 and 1 for
the entire domain. These models assume that the likelihood increases with the higher
value of X.

These models differ mainly in these “link functions” – the functions that link between
the linear predictor and the mean of the distribution function. Logit models assume
that the error term follows a logistic distribution, while probit models assume a normal
distribution for the error term. Logit models are often used for their easier interpreta-
tion of the coefficients (cf. the odds ratio).

4.4.2 Estimating the treatment effect

Now that we estimated the propensity score, we move on to estimating the treatment
effect. There are again several ways of estimating the treatment effect.

1. Including p(x) as a covariate

A rather straightforward way of estimating the treatment effect is to include the
propensity score as a covariate:

Yi = α + τDi + βp(Xi) + ui,

where Di is the treatment status for unit i and Xi is the vector of observed
characteristics for unit i.

2. Blocking on p(x)

We divide the propensity score p(x) to make K number of blocks. Suppose we
make 5 blocks. Then each block k will have a width of 1/5 = 0.20 based on p(x).
We then compute the treatment effect τ̂k within each block. The final matching
estimator is then

τ̂b =
K∑
k=1

τ̂k ·
Nk

N
,

where Nk is the number of treated and control observations whose p(x) fall within
the block k.

We can obtain the treatment effects τ̂k by running the following regression:

Yik = α + τkDik +Xiβ + uik.

We can then calculate τ̂b using the formula above.

3. Weighting by p(x)
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This method involves weighting units to obtain the ATE in a rather simple way.
Consider giving the weight 1/p(x) for the treated group and the weight 1/(1−p(x))
for the control group. Then we can show that

E
[
DY

p(X)

]
= E[Y (1)] and

E
[
(1−D)Y

1− p(X)

]
= E[Y (0)].

Then we can combine them to obtain the ATE:

ATE ≡ E[Y (1)]− E[Y (0)]

= E
[
DY

p(X)

]
− E

[
(1−D)Y

1− p(X)

]
We can estimate ATE by its sample analog with p̂(X):

τ̂PS
M =

1

N

N∑
i=1

(
DiYi

p̂(Xi)
− (1−Di)Yi

1− p̂(Xi)

)
.

The intuition behind this estimator is that the estimated p̂(X) indicates the
proportion of units that are treated, and weighting each group by 1/p(x) and
1/(1− p(x)) make all the units be represented equally across two groups.

This weighting can be applied by running the weighted OLS in the following
regression

Yi = α + τDi +Xiβ + ui

with the weight

ωi =

√
DY

p(X)
− (1−D)Y

1− p(X)
.

4.5 Summary

We just learned various matching methods in a SparkNotes fashion, starting with
the key assumptions for matching (CIA, CSA), exact matching methods, all the
way to propensity score matching. In many cases, we need to condition on many
covariates to argue for conditional independence. But a large number of variables
inevitably leads to the high dimensionality problem, where there are too many
cells both the treated and control units need to fill in. When the exact matching
methods suffer from this critical issue, propensity score matching offers a novel
solution where we estimate the propensity score using all the observed charac-
teristics and match on this one variable instead of having to match on all the
covariates. The support condition is now more likely to be satisfied.
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However, this creates another problem of estimating p(x). If there are only a few
covariates with discrete values, we can rely on nonparametric methods to estimate
the propensity score (but then, the support condition is also likely to be met in
exact matching methods...). But with some continuous variables, we may have to
rely on some functional forms for estimation.

There is even a bigger concern. Economists care a lot of self-selection, and as long
as we cannot properly control for treatment assignment (Z) and take-up (D), the
audience will have a hard time believing the conditional independence assumption,
a strong assumption that is often not satisfied in reality. Take college enrollment,
for example. No matter how many characteristics we observe about students (e.g.
SAT scores, parents’ education level, parents’ income, and neighborhood they
live in), we may still think that there is something fundamentally different about
students who are enrolled in college from those who are not. However, because
these matching estimators require a strong assumption about the unobservables
– choices given observables X are assumed to be random. Thus, these matching
estimators that are based on “selection on observables” models are less widely
used in economics.
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5 Synthetic Control Method

5.1 Motivation

Let us revisit the DID estimation for a moment. The key identifying assumption we made was
the parallel trends assumption, where we set the observed trend of the control group equal to
the counterfactual trend of the treated. But there are cases where the argument/assumption
that the control and the treated would have the parallel trends is not convincing. Making
the matter worse, imagine we only have one treated unit where all the control units do not
satisfy parallel trends. One such case is a policy implementation in one state in the United
States. If there was a tax change in California, can we find another state whose observed
trend is parallel to the counterfactual trend in California? Each state is quite unique in their
own ways, and it is difficult to argue that a neighboring state can be used as the control for
the DID estimation.

We can stop here and move onto another research idea, but some economists had a good idea:
if there is no single candidate that can serve as a good control, then what if we artificially
construct a weighted average of control units that “matches” parallel trends?

Abadie, Diamond, and Hainmueller (2010) examine the effect of California’s anti-tobacco law
(Proposition 99) on cigarette sales. There are no other states that have the same parallel
trends as California before the law was passed, so the authors construct a synthetic California
that is the weighted average of the control states.

5.2 Constructing a synthetic control

How do we find the weights for the control units to construct a synthetic control? I will first
describe the procedure of constructing a synthetic control and then use an example to walk
through the process again.

Let Z1 be pre-treatment outcomes and covariates for the treated unit and Z0 be pre-treatment
outcomes and covariates for the control group. Suppose we have k variables and J control
units, then Z1 is a k × 1 matrix and Z0 is a k × J matrix. The weights are obtained by the
following:

ω∗
j ≡ argmin

ω∈RJ

(Z1–Z0W )′V (Z1–Z0W ) s.t. ωj ≥ 0 ∀j and
J∑

j=1

ωj = 1,

where W is J × 1 vector of weights for each control unit and V is a weighting matrix. Then
the estimate for the treatment effect in the post-treatment period is Y1–Y0W∗ where W∗ is
a J × 1 vector of obtained weights ω∗

J .

Let us use the signature example for the synthetic control method to describe the process.
The outcome of interest is per-capita cigarette sales, and the treatment (Proposition 99)
occurs in 1988. Then to find the weights, we need to first decide what variables to use to
construct a synthetic control. We can use lagged outcome variables (per-capita cigarette sales
in 1975, 1980, and 1988). We can also include other characteristics for each state that would
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help us construct a plausible synthetic control, such as cigarette price, logged per-capita
income, percentage of population aged 15-24, and per-capita beer consumption, all averaged
over 1980-1988. Then Z1 will have all these seven variables (k = 7). The authors also remove
the states that passed a similar law and consider the remaining 38 states (J = 38).

5.3 Notes

1. The key assumption here is that the treatment and the synthetic control have the same
parallel trends. Another assumption we implicitly make is that the counterfactual
outcome of the treated unit can be constructed as a linear combination of the control
units. Other implicit assumptions are similar to those in DID (no other concurrent
changes to the treated unit, only the treated unit receives treatment).

2. The pre-treatment trend of the synthetic control is almost identical to the pre-treatment
trend of the treated unit by construct, since the objective function includes lagged out-
come variables. One way to check whether this assumption could be valid is to form a
synthetic control using a subset of data that includes only half of the pre-treatment pe-
riods, use the obtained weights to construct a synthetic control, and then see whether
the parallel trends hold between the synthetic control and the treated unit for the
removed pre-treatment periods.

3. The synthetic control method is used when we have one treated unit (a “case study”)
and several control units from which we can form a synthetic control. What if we want
to apply the same framework to a case with multiple treated units? In addition, can we
try to construct a synthetic control that has the parallel trend and not necessarily the
same level? Google “synthetic difference-in-differences method” for more information.

19


	Randomized Controlled Trials
	Assumptions
	The Rubin causal model
	How to design a randomized controlled experiment
	Things to consider next

	Instrumental Variables (IV) Estimation
	Motivation
	Classical IV model
	Exact Point Identification
	Overidentification
	Two-Stage Least Squares

	Modern IV model

	Difference-in-Differences Estimation
	Motivation
	Difference-in-Differences Estimator
	Assumptions
	Difference-in-Differences as a Regression
	Notes

	Matching Methods
	Motivation
	Assumption
	Matching Methods
	The Cell Estimator
	Other Exact Matching Methods

	Propensity Score Matching (PSM)
	Estimating the propensity score p(x)
	Estimating the treatment effect

	Summary

	Synthetic Control Method
	Motivation
	Constructing a synthetic control
	Notes


