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1 Sets

Introduction.
We build our knowledge up to σ-algebras to define probability formally in the next section.

Definition 1.1. The set, S, of all possible outcomes of a particular experiment is called the sample space
for the experiment.

Definition 1.2. An event, A, is any collection of possible outcomes of an experiment, that is any subset
of S.

Definition 1.3. Let S be the sample space, i.e., the set of all elements under consideration. Let A and B
be sets contained in S. Then:

• If every point in A is also in B, then A is a subset of B, denoted A ⊆ B.

• The empty set contains no points, denoted ∅.

• The union of A and B is the set of points in A, B, or both, denoted A ∪B.

• The intersection of A and B is the set of points in both A and B, denoted A ∩B.

• The complement of A is the set of elements in S but not in A, denoted Ac.

• If A ∩B = ∅, they are disjoint.

Theorem 1.4. For any sets A, B, C, and {Ei}∞i=1 defined on the sample space S:

• Commutativity: A ∪B = B ∪ A
A ∩B = B ∩ A

• Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C

• Distributive Laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∩
(⋃∞

i=1Ei

)
=
⋃∞

i=1

(
A ∩ Ei

)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∪

(⋂∞
i=1 Ei

)
=
⋂∞

i=1

(
A ∪ Ei

)
∗This lecture note is for personal use only and is not intended for reproduction, distribution, or citation.
†This lecture note was originally written by James Banovetz.
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• DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc and
(⋃∞

i=1 Ei

)c
=
⋂∞

i=1E
c
i

(A ∩B)c = Ac ∪Bc and
(⋂∞

i=1Ei

)c
=
⋃∞

i=1E
c
i

Definition 1.5. Given a sample space S, a σ-algebra(sigma algebra) on S is a collection B ⊆ 2S such
that B is nonempty and B is

1. closed under complements (E ∈ B ⇒ Ec ∈ B), and

2. closed under countable unions (E1, E2, · · · ∈ B ⇒
⋃∞

i=1Ei ∈ B).

Aside. Given a sample space S, consider a σ-algebra B on S. Then:

• S ∈ B

• ∅ ∈ B

• B is closed under countable intersections.

Example 1.6. Consider the sample space S = {1, 2, 3}. One σ-algebra is known as the trivial σ-algebra,
given by {∅, S}. The one we’ll typically be concerned with is B = {all subsets of S}, i.e., the power set of
S. In this case, there are n = 3 elements, so there are 23 = 8 subsets, the collection of which forms the
sigma algebra B:

{1} {1, 2} {1, 2, 3}
{2} {1, 3} ∅
{3} {2, 3}

This ties into what follows, as we will be concerned with assigning probabilities to every set in the power
set (e.g., what’s the probability of 1, of 2, of 1 and 2, etc.).

So the burning question is: Why do we need σ-algebras to define probability? The reason is that
there are sets in which mathematics behaves in a quite strange manner, such as non-measurable sets.
We want to make sure that we work only with the “measurable” sets whose areas are well-defined.
Perhaps the next burning question is: Do we need to know σ-algebras well? Because σ-algebras are
there to keep us from falling into some mathematical paradoxes, it is okay even if we do not fully
understand what they are.
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2 Probabilities

Definition 2.1. A measure µ on S with σ-algebra B is a function µ : B 7→ [0,∞) such that

1. µ(∅) = 0, and

2. µ
(⋃∞

i=1Ei

)
=
∑∞

i=1 µ(Ei) for any E1, E2, · · · ∈ B where Ei ∩ Ej = ∅ ∀i ̸= j.

Definition 2.2. A probability measure is a measure P on S with σ-algebra B such that P(S) = 1.

Theorem 2.3. If P is a probability measure on S with σ-algebra B and A,B ⊂ B, then

• P(Ac) = 1− P (A)

• P(A) ≤ 1

• P(B ∩ Ac) = P(B)− P(A ∩B)

• P(A ∪B) = P(A) + P(B)− P(A ∩B)

• If A ⊆ B, then P(A) ≤ P(B)

Example 2.4. Suppose we have a fair coin. Then the sample space is S = {H,T} (i.e., heads or tails). If
we define heads and tails to each have a probability of one-half, then:

1. P
(
{H}

)
= P

(
{T}

)
=

1

2
≥ 0

2. P(S) = 1 (i.e. the probability we get heads, tails, both, or neither, is equal to 1)

3. P
(
{H} ∪ {T}

)
=

1

2
+

1

2
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3 Counting

Aside. A topic intimately related to the basics of probability theory is the idea of counting. When trying
to calculate something like P(A), we can theoretically follow simple steps:

1. List each element in our set S.

2. Assign probabilities to elements in S.

3. Define A to be a set of elements in S.

4. Sum the probabilities in each event in A.

This is easy to do with something like coin-flipping, but in practice can be vastly more difficult. We’ll
cover four basic scenarios and the associated formulas.

Theorem 3.1. If there are k groups with the ith group containing ni elements for groups i = 1, · · · , k,
then there are n1 × n2 × · · · × nk ways to form k-tuples containing one element from each group. This is
known as the fundamental theorem of counting.

Example 3.2. Suppose that license plates are created using three letters (A-Z) followed by four numerical
digits (0-9). If repeated letters/digits are allowed, how many distinct license plates are there?

26× 26× 26× 10× 10× 10× 10 ≈ 175 million

Definition 3.3. The factorial of a natural number n ∈ N is the production of all natural numbers less
than or equal to n, that is,

n! = n× (n− 1)× (n− 2)× · · · × 2× 1 =
n∏

i=1

i

There are four canonical ways of counting the total number of possibilities N when there are n items from
which to choose and we are choosing r times.

1. Ordered, Without Replacement (also known as a permutation)

N = P n
r =

n!

(n− r)!

Example 3.4. Padlock “Combinations”. Simple padlocks feature 40 digits, requiring three distinct
digits in the proper order to unlock. How many possible padlock “combinations” are there?

N = 40× 39× 38 =
40!

37!
= 59, 280

2. Ordered, With Replacement. This corresponds the fundamental theorem of counting, where
ni = nj for all i and j.

N = nr

Example 3.5. Recall our license plates example from before. Some states give trucks only numerical
digits, where duplicates are allowed but order matters. If a license plate has six numerical digits (0-9),
how many different truck license plates are there?

N = 106 = 1, 000, 000
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3. Unordered, Without Replacement (also known as a combination)

N = Cn
r =

(
n

r

)
=

n!

(n− r)!r!

Example 3.6. Suppose you have 5 positions in your PhD program, but 30 applicants. How many
different incoming classes could you select?

N =

(
30

5

)
=

30!

(25!)(5!)
= 142, 506

4. Unordered, With Replacement

N =
(n+ r − 1)!

(n− 1)!r!
=

(
n+ r − 1

r

)
Example 3.7. Suppose we have five potential job sites, enumerate 1-5, and three identical trucks
(in the sense that it does not matter which truck goes to which site, what matters is the number of
trucks that end up at a site). If multiple trucks can be sent to the same site, how many different
assignments are possible?

• Think about the 5 sites as “bins,” numbered 1 through 5

1 2 3 4 5

• Imagine trucks can go to different sites, e.g.:

1 2

TT

3 4

T

5

This would correspond to two trucks at site 2 and one at site 4 (alternatively, this could be
thought of as the outcome where two 2’s are drawn and one 4 is drawn).

• Think of each bin “wall” and each truck as an element to be ordered. Note that the first and
last walls are “immobile,” so we’ll forget them:

1 2

TT

3 4

T

5

This corresponds to the ordering WTTWWTW .

• Now we have seven total positions. If they were distinct elements, we’d have 7! possibilities.
Walls and Trucks are indistinguishable from other walls and trucks, respectively, so we need to
divide out the redundancies:

N =
7!

4!3!
=

(
7

3

)
which corresponds to our formula for unordered, with replacement, when we have five objects,
picking three!
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These tools are helpful when a sample space S is finite and all outcomes are equally likely. If there
are n elements in S = {s1, · · · , sn} and P

(
{si}

)
= 1/N , then for a set of outcomes A:

P(A) =
# of elements in A

# of elements in S

Since we’re already on the topic, it is worth mentioning two methods that are often used in econo-
metrics: 1) Monte Carlo simulation and 2) bootstrapping.

1. Monte Carlo simulations: It is a fancy way of saying algorithms that involve repeated
random sampling. Suppose we want to know the distribution of the sum of the eyes from two
dice rolled randomly. Assuming that each face has an equal chance of occurrence (probability
of 1/6), for each round, we can draw two random numbers between 1 and 6, repeat this for
10,000 rounds, then plot the histogram of the sum of the eyes.

2. Bootstrapping: We call it bootstrapping if we use random sampling with replacement to
obtain a metric or run a test. We often talk of bootstrapping standard errors when it becomes
difficult to compute standard errors. Suppose we have 5,000 observations. To bootstrap stan-
dard errors, we sample the same number of observations (N = 5000) from our sample with
replacement, so some observations can be drawn multiple times. We run the same regression
with this bootstrapped sample, obtain the standard errors, and repeat this many times, say
B = 10000. We would have then run 10,000 regressions with 10,000 different bootstrapped
samples. We then take the mean of the 10,000 standard errors to obtain the bootstrapped
standard error.
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4 Conditional Probabilities and Independence

Aside. Once we’ve established the basics of probability theory, we can start thinking about how to update
and fold new information into the probabilities. To formalize the notion of updating via new information,
we think about conditional probabilities.

Definition 4.1. If A and B are events in S, and P(B) > 0, then the conditional probability of A given
B, denoted P(A|B), is defined as

P(A|B) =
P(A ∩B)

P(B)

Given B ∈ B such that P(B) ̸= 0, P(·|B) : B → [0,∞) is a probability measure on S with σ-algebra B.

Example 4.2. Suppose we toss a fair six-sided die once. What is the probability that we observe a 1,
given that we observe an odd number?

P(odd) = 1/2 (three odds out of six)

P(1 and an odd) = 1/6 (one 1 out of six total)

P(one|odd) = P(one and an odd)

P(odd)
(by def. of cond. prob.)

P(one|odd) = 1/6

1/2
= 1/3

Definition 4.3. Two events A and B in S are said to be independent if and only if we have one of three
equivalent conditions:

• P(A|B) = P(A)

• P(B|A) = P(B)

• P(A ∩B) = P(A)P(B)

Theorem 4.4. Bayes’ Rule
Let A and B be events in a sample space S. Then the following relationship holds between conditional
probabilities:

P(A|B) =
P(B|A)P(A)

P(B)

Theorem 4.5. Law of Total Probability
Suppose {Ai : i ∈ I} is a countable collection of events that partition the sample space S, and that P(Ai) > 0
for each i ∈ I. If B is an event, then

P(B) =
∑
j∈I

P(Aj)P(B|Aj) (Law of Total Probability)

and for each i ∈ I,

P(Ai|B) =
P(B|Ai)P(Ai)∑
j∈I P(B|Aj)P(Aj)

(Bayes’ Rule)
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5 Random Variables and Distribution Functions

Definition 5.1. A random variable X : S → R is a function that maps a sample space S onto the real
numbers. (Domain/Codomain/Range)

Remark. There is nothing random about the random variable, as it simply maps a sample space onto
the real numbers. However, we call it a random variable because the occurrence of outcomes in a sample
place depends on random events.

Example 5.2. For die rolls, we can define the set {1, 2, 3, 4, 5, 6} as the events in the sample space, then
define the random variable X as

X =

{
1 if we observe an even value

0 if we observe an odd value

Aside. Further, we can define a probability function over the random variables. X = xi if and only if we
observe an outcome ω ∈ S such that X(ω) = xi.

PX(X = xi) = P
(
{ω ∈ S|X(ω) = xi}

)
From our example above, P (X = 1) = 1/2 , where our set of ω’s are {2, 4, 6}. Note that we need to be
careful with our notation for unrealized values of a random variable, an uppercase is used. For realized
outcomes, we use lower case. If X = {x : x = X(ω) for some ω ∈ S} is uncountable, then for any A ⊆ X,

PX(X ∈ A) = P
(
{ω ∈ S|X(ω) ∈ A}

)
Definition 5.3. The cumulative distribution function or cdf of a random variable X, denoted FX(x),
is defined as

FX(x) = PX(X ≤ x), for all x ∈ R

Example 5.4. Consider the experiment where we’re tossing a coin twice, and our RV is X = the number
of heads. Then the cdf of X is

FX(x) =



0 if −∞ < x < 0

1/4 if 0 ≤ x < 1

3/4 if 1 ≤ x < 2

1 if 2 ≤ x < ∞

Theorem 5.5. The function G(x) is a CDF if and only if it satisfies three conditions:

1. lim
x→−∞

G(x) = 0 and lim
x→∞

G(x) = 1

2. G(x) is a non-decreasing function of x

3. G(x) is right-continuous (i.e., for every number x0, lim
x↓x0

G(x) = G(x0))

Definition 5.6. The random variables X and Y are identically distributed if, for every set A ∈ B1,
PX(X ∈ A) = PY (Y ∈ A). In other words:

X and Y are identically distributed ⇐⇒ FX(x) = FY (x) ∀ x
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Definition 5.7. A random variable X is continuous if FX(x) is a continuous function of x. A random
variable is discrete if FX(x) is a step function of x.

Example 5.8. Consider a simple CDF for a continuous random variable (this is from an exponential
distribution):

FX(x) =

{
0 if x < 0

1− e−x if x ≥ 0

Similarly, consider the CDF for a discrete Bernoulli random variable (a single 0 or 1, where 1 occurs with
probability p):

FX(x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if 1 ≤ x < ∞

Definition 5.9. The probability mass function (or pmf) of a discrete random variable X is given by
fX(x) = PX(X = x) for all x.

Example 5.10. Suppose you’re betting on multiple coin tosses. Assuming it is a fair coin, the probability
you guess correctly on any coin toss is 1/2. If there are 16 tosses, what’s the probability you’ll guess x
tosses right?

You make a guess for 16 tosses, each toss with a probability of 1/2 being correct. A probability of having
guessed x tosses correctly is then (

1

2

)x

.

You also got the rest of the tosses incorrectly, where each incorrect guess takes the probability of (1−1/2).
Note that each toss (and thus each guess) is independent of tosses before and after. Combining them yields(

1

2

)x(
1− 1

2

)16−x

.

This probability is guessing x tosses correctly in one ordered sequence. The probability of interest is the
probability of guessing x tosses correctly, in any order. Out of 16 tosses, there are

(
16
x

)
ways of guessing x

tosses correctly. Thus,

PX(X = x) =

(
16

x

)(
1

2

)x(
1− 1

2

)16−x

This is an example of a binomial distribution with n = 16 and p = 1/2.

Definition 5.11. The probability density function (or pdf) of a continuous random variable X is
given by fX(x), where ∫ x

−∞
fX(t)dt = FX(x) ∀ x

Further, note that if fX(x) is continuous, then
d
dx
FX(x) = fX(x) by the fundamental theorem of calculus.
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Theorem 5.12. Fundamental Theorem of Calculus.
Let f : [a, b] → R be integrable on [a, b] and let F : [a, b] → R satisfy the conditions

1. F is continuous on [a, b], and

2. F is differentiable on (a, b) and F ′(x) = f(x) ∀x ∈ (a, b).

Then

∫ b

a

f(x)dx = F (b)− F (a).

Aside. Leibniz Integral rule

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

Example 5.13. The PDF for a uniform [0, 1] variables is:

fX(x) =


0 if x < 0

1 if 0 ≤ x ≤ 1

0 if x > 1

or fX(x) = 1{0 ≤ x ≤ 1}

Theorem 5.14. A function fX(x) is a pdf or pmf of a random variable X if and only if

1. fX(x) ≥ 0 for all x

2.
∑

x fX(x) = 1 or
∫∞
−∞ fX(x)dx = 1

Aside. The support is the subset of the domain of fX(x) where the function is strictly positive. fX(x)
takes on a value of zero elsewhere. In the previous example, the support is [0, 1]. For the standard normal,
the support is (−∞,∞). Remember to always include the support when writing down PDFs, as it becomes
extremely important when calculating moments, transforming variables, etc.
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6 Transformations

Aside. We’re frequently more interested in the distribution of functions of random variables than in
the parent distributions themselves. If X is a random variable, we often want to go about finding the
distribution of g(X). This leads us to the concept of transformations.

Definition 6.1. Let X be a random variable with CDF FX(x). Then a function of X (Y = g(X)) is also
a random variable, known as the transformation of X. Moreover, For any set A,

PY (Y ∈ A) = PY

(
g(X) ∈ A

)
= PX

(
X ∈ g−1(A)

)
which defines the probability distribution of Y = g(X).

Example 6.2. Let X be a discrete random variable following a binomial distribution, i.e.,

fX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, · · · , n

where n is a positive integer and p ∈ [0, 1]. Consider the random variable Y = g(X), where g(X) = n−X.
We can rearrange to get X = n− Y . Using the definition above, we can find the PMF of Y :

fY (y) = PY (Y = y) (Y is discrete)

= PY (n−X = y) (by def. of Y )

= PX(X = n− y) (rearranging)

= fX(n− y) (by def. of the PMF)

=

(
n

n− y

)
pn−y(1− p)n−(n−y) (plugging in values)

fY (y) =

(
n

y

)
(1− p)ypn−y, y = 0, 1, · · · , n (simplifying)

Note the switch in the combination; recall our counting definitions for a justification. Thus, the transfor-
mation of X also has a binomial distribution.

Aside. While this can be a straightforward exercise for discrete random variables (although it may not
always be this easy), we will spend more time dealing with transformations of continuous random variables
during the first year. For univariate transformations, we can follow the following simple steps to get our
transformation, using the definition of the transformation:

1. Let U be a function of Y , i.e., U = g(Y ).

2. Consider the probability that U ≤ u.

3. Substitute in g(Y ) for U and isolate Y (pay attention to supports).

4. Rewrite probabilities as CDFs.

5. Differentiated w.r.t. u to find fU(u).
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Example 6.3. Consider a random variable Y with CDF FY (y) and support (−∞,∞). We can find and
expression for fU(u), where U = Y 2:

P (U ≤ u) = P (Y 2 ≤ u) (plugging in for U)

= P (−
√
u ≤ Y ≤

√
u) (isolating Y )

= FY (
√
u)− FY (−

√
u) (by our properties of CDFs)

fU(u) =

(
1

2
√
u

)
fY (

√
u) +

(
1

2
√
u

)
fY (−

√
u) (differentiating w.r.t. u)

=

(
1

2
√
u

)[
fY (

√
u) + fY (−

√
u)
]
, u ∈ [0,∞) (simplifying)

Note that this can get more complicated if the support is not symmetric around zero.

Example 6.4. Consider a random variable X with CDF FX(x) and support (−2, 4). Find an expression
for fW (w), where W = |X|.

P (W ≤ w) = P (|X| ≤ w) (plugging in for W )

=

{
P (−w ≤ X ≤ w) if w ∈ [0, 2)

P (X ≤ w) if w ∈ [2, 4)
(isolating X)

=

{
FX(w)− FX(−w) if w ∈ [0, 2)

FX(w) if w ∈ [2, 4)
(by our properties of CDFs)

fW (w) =

{
fX(w) + fX(−w) if w ∈ [0, 2)

fX(w) if w ∈ [2, 4)
(differentiating w.r.t. u)

Theorem 6.5. Suppose we have a continuous random variable Y , and U = g(Y ) is a strictly increasing
or strictly decreasing function of Y . Then the PDF of U is given by

fU(u) = fY
(
g−1(u)

) ∣∣∣∣dg−1(u)

du

∣∣∣∣
Aside. This follows directly from the method outlined above:

• If g′(Y ) > 0, then P (g(Y ) ≤ u) = P (Y ≤ g−1(u)) = FY

(
g−1(u)

)
and dg−1(u)

du
> 0.

• If g′(Y ) < 0, then P (g(Y ) ≤ u) = P (Y ≥ g−1(u)) = 1− FY

(
g−1(u)

)
and dg−1(u)

du
< 0.

Example 6.6. Suppose we have a random variable Y which measures tons of sugar refined per day. The
distribution of Y is given by

fY (y) = 2y y ∈ [0, 1]

Suppose it costs the company $300 per ton to refine sugar, with fixed costs of $100 per day. Then the
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daily profit in hundreds of dollars is U = 3Y − 1. Find the PDF of U .

U = g(Y ) = 3Y − 1 (the transformation)

Y = g−1(U) =
U + 1

3
(solve for Y )

∂g−1(U)

∂U
=

1

3
(differentiate w.r.t. U)

fU(u) = 2

(
u+ 1

3

) ∣∣∣∣13
∣∣∣∣ (Theorem 6.5)

=
2

9
(u+ 1) u ∈ [−1, 2]

Aside. We will learn other distributions in the econometrics sequence, such as the chi-squared (χ2)
distribution, t-distribution, and F -distribution. Make sure you keep track of the assumptions and the
support for each distribution.
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7 Moments

Introduction. The moments are an important concept in mathematics and statistics. It is
important that we know what they are, especially because they are often treated as common
knowledge. (You’ll hear professors casually mention “restrictions for higher moments”, “matching
moments”, etc.)

Moments are quantitative measures used to describe the shape of a function. In the case of a
probability distribution, the first moment is the mean, the second moment is the variance, the
third moment is the skewness, and the fourth moment is the kurtosis. The first moment pro-
vides information about the central tendency – where the center of mass is located. The second
moment describes the spread of a function. The third moment describes how skewed or asymmetric
a distribution is. The fourth moment describes how heavy the distribution is on its tails.

Definition 7.1. The expected value of a random variable g(X), denoted by E
[
g(X)

]
, is given by:

E
[
g(X)

]
=

{∫∞
−∞ g(x)fX(x)dx if X is continuous∑
x g(x)fX(x) if X is discrete

so long as E
[
|g(X)|

]
< ∞.

Aside. If E
[
|X|
]
< ∞, then E[X] exists:

E[X] =

∫ ∞

−∞
xdFX(x) =

∫ ∞

0

xdFX(x) +

∫ 0

−∞
xdFX(x) =

∫ ∞

0

xdFX(x)︸ ︷︷ ︸
=I1

−
∫ 0

−∞
(−x)dFX(x)︸ ︷︷ ︸

=I2

E
[
|X|
]
=

∫ ∞

0

|x|dFX(x) +

∫ 0

−∞
|x|dFX(x) =

∫ ∞

0

xdFX(x) +

∫ 0

−∞
(−x)dFX(x) = I1 + I2

Example 7.2. Find the expected value of X, where X is distributed exponentially (β),
i.e., fX(x) = βe−βx, 0 ≤ x < ∞.

E
[
X
]
=

∫ ∞

0

xβe−βxdx (by def. of E)

=
[
x
(
−e−βx

)]∞
0
+

∫ ∞

0

e−βxdx (by integration by parts)

= 0 +

∫ ∞

0

e−βxdx (e−βx → 0 faster than x grows)

=

[
− 1

β
e−βx

]∞
0

(taking the integral)

E
[
X
]
=

1

β
(evaluating)

Aside. Integral by Parts.
If f, g : [a, b] → R are integrable on [a, b] and have antiderivative F,G on [a, b], then∫ b

a

F (x)g(x)dx =
[
F (b)G(b)− F (a)G(a)

]
−
∫ b

a

f(x)G(x)dx

14



Proof. Let H(x) := F (x)G(x). Then H ′(x) = f(x)G(x)+F (x)g(x). It follows from Fundamental Theorem

of Calculus that
∫ b

a
H ′(x)dx = H(b)−H(a).

Theorem 7.3. Expectations are linear, i.e., for a random variable X and any constants a, b, and c,

E
[
ag(X) + bh(X) + c

]
= aE

[
g(X)

]
+ bE

[
h(X)

]
+ c.

Definition 7.4. For each integer n, the nth moment of X, mn, is

mn = E
[
Xn
]
.

The nth central moment, µn, is
µn = E

[
(X − µ)n

]
where m1 = µ = E

[
X
]
.

Definition 7.5. The variance of a random variable X is defined to be the expectation:

Var
[
X
]
= E

[
(X − E[X])2

]
This can equivalently be written as Var

[
X
]
= E

[
X2
]
−
(
E[X]

)2
.

Theorem 7.6. If X is a random variable with finite variance, then for any constants a and b,

Var[aX + b] = a2Var[X].

Definition 7.7. Let X be a random variable with CDF FX(x). The moment generating function or
MGF of X, denoted by MX(t), is given by

MX(t) = E
[
etx
]

if the expectation exists for t in the neighborhood of 0.

Example 7.8. Find the MGF for a random variable Z with PDF ϕ(z) = 1√
2π
e−

1
2
z2 , z ∈ (−∞,∞):

E
[
etZ
]
=

∫ ∞

−∞
etz

1√
2π

e−
1
2
z2dz (finding the expected value)

= e
1
2
t2
∫ ∞

−∞

1√
2π

e−
1
2
(z−t)2dz −1

2
(z2 − 2tz + t2) +

1

2
t2 = −1

2
z2 + tz

= e
1
2
t2 (Normal with mean t and variance 1)

Aside. Integration by Substitution –Definite integrals.
Let ϕ : [a, b] → I be a differentiable function with a continuous derivative, where I ⊂ R is an interval.
Suppose that f : I → R is a continuous function. Then, if x = ϕ(z),∫ b

a

f
(
ϕ(z)

)
ϕ′(z)dz =

∫ ϕ(b)

ϕ(a)

f(x)dx.

Example 7.9. Find the MGF for a random variable X ∼ N(µ, σ2) with PDF fX(x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

.

Let x = ϕ(z) = zσ + µ.

E[etX ] =
∫ ∞

−∞
etx

1√
2πσ2

e−
1
2(

x−µ
σ )

2

dx

=

∫ ∞

−∞
eµte(σt)·z

1√
2πσ2

e−
1
2
z2σdz (Integration by Substitution)

= eµtE[e(σt)Z ] (Standard Normal)

= eµt+
1
2
σ2t2

15



Aside. We call these moment generating functions because of the following property:

E
[
Xn
]
= M

(n)
X (0) =

dn

dtn
MX(t)

∣∣∣
t=0

.

Assuming that we can exchange integrals and derivatives (which we can, almost always, in our classes
during the first year), we can show that this is true for the expected value:

d

dt
MX(t) =

d

dt

∫ ∞

−∞
etxfX(x)dx =

∫ ∞

−∞

(
d

dt
etx
)
fX(x)dx =

∫ ∞

−∞
xetxfX(x)dx = E

[
XetX

]
d

dt
MX(t)

∣∣∣
t=0

= E
[
XetX

]∣∣∣
t=0

= E
[
X
]

Proceeding via induction, we could prove that this holds for any integer n, assuming that the MGF exists.
In other words, we could use MGFs to obtain every non-central moment mn.

Example 7.10. Consider the MGF of the normally distributed RV we found above:

MX(t) = eµt+
1
2
σ2t2

M
(1)
X (t) = eµt+

1
2
σ2t2 · (µ+ σ2t) (differentiating w.r.t. t)

M
(1)
X (0) = µ

M
(2)
X (t) = eµt+

1
2
σ2t2 · (µ+ σ2t)2 + eµt+

1
2
σ2t2 · σ2 (differentiating w.r.t. t twice)

M
(2)
X (0) = µ2 + σ2
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8 Multiple Random Variables

Definition 8.1. Let (X, Y ) be a discrete, bivariate, random vector. Then the function fXY (x, y) : R2 → R
defined by

fXY (x, y) = P (X = x, Y = y)

is the joint probability mass function.

Example 8.2. Consider the following table with associated probabilities for discrete random variables X
and Y , where each may take on values in the set {1, 2, 3}:

X

1 2 3

1 0 1/8 1/4

Y 2 1/12 1/4 0

3 1/6 1/8 0

This is a table representation of a joint PMF, where each cell contains the probability P (X = xi, Y = yj).

Definition 8.3. Given a discrete bivariate PMF fXY (x, y), themarginal PMFs ofX and Y , denotedfX(x) =
P (X = x) and fY (y) = P (Y = y), are given by

fX(x) =
∑

y∈Range(Y )

fXY (x, y) and fY (y) =
∑

x∈Range(X)

fXY (x, y).

Example 8.4. Consider the distribution from the preceding example. To find the marginal PMF of Y ,
we sum across the rows:

X

1 2 3 fY (y)

1 0 1/8 1/4 3/8

Y 2 1/12 1/4 0 1/3

3 1/6 1/8 0 7/24

fY (y) =


3/8 if Y = 1

1/3 if Y = 2

7/24 if Y = 3

Analogously, to find the marginal PMF of X, we would sum over the values in each column.

Definition 8.5. If (X, Y ) is a continuous, bivariate, random vector, then fXY (x, y) is the joint proba-
bility density function if for every A ⊆ R2:

P
{
(X, Y ) ∈ A

}
=

∫∫
A

fXY (x, y) dx dy.

Example 8.6. The bivariate uniform PDF, where x ∈ [0, 1] and y ∈ [0, 1], is given by

fX,Y (x, y) = 1

{
(x, y) ∈ [0, 1]× [0, 1]

}
=

{
1 if x ∈ [0, 1] and y ∈ [0, 1]

0 else

Definition 8.7. Given a continuous bivariate PDF fXY (x, y), the marginal PDFs of X and Y are given
by

fX(x) =

∫ ∞

−∞
fXY (x, y)dy and fY (y) =

∫ ∞

−∞
fXY (x, y)dx.

17



Example 8.8. Consider the joint PDF

fXY (x, y) = e−y
1
{
0 < x < y < ∞

}
=

{
e−y if 0 < x < y < ∞
0 else

Then the marginal PDF of X can be found:

fX(x) =

∫ ∞

x

e−ydy (integrating out Y )

= −e−y
∣∣∞
x

(taking the integral)

= 0−
(
−e−x

)
(evaluating)

fX(x) = e−x · 1
{
x ∈ (0,∞)

}
=

{
e−x if x ∈ (0,∞)

0 otherwise

Definition 8.9. Let (X, Y ) be a continuous (discrete) bivariate random vector with joint PDF (PMF)
fXY (x, y) and marginal PDFs (PMFs) fX(x) and fY (y). Then for any x such that fX(x) > 0, the
conditional PDF (PMF) of Y given X = x is given by

fY |X(y|x) =
fXY (x, y)

fX(x)
.

Example 8.10. Given the joint PDF fXY (x, y) = e−y, where 0 < x < y < ∞, find the conditional
distribution of Y given X = x.

fX(x) = e−x
1
{
x ∈ (0,∞)

}
(from the previous example)

fY |X(y|x) =
fXY (x, y)

fX(x)
(by definition)

=
e−y

e−x
(plug in the PDFs)

fY |X(y|x) = e−(y−x)
1
{
y ≥ x

}
=

{
e−(y−x) if y ≥ x

0 otherwise
(simplify)

Definition 8.11. Let (X, Y ) be a bivariate random vector with joint PDF or PMF fXY (x, y) and marginal
PDFs or PMfs fX(x) and fY (y). Then X and Y are independent random variables if for every x ∈ R
and y ∈ R,

fXY (x, y) = fX(x)fY (y)

Aside. This is the formal definition of independence. If we need to show two variables are not independent,
we must appeal to this definition. To show independence, however, we can rely on a simpler theorem.

Theorem 8.12. X and Y are independent random variables if and only if there exist functions g(x) and
h(y) such that for all x ∈ R and y ∈ R,

fXY (x, y) = g(x)h(y)

Aside. This gives us a weaker condition to check, as it does not require the use of integrals or sums–we
don’t need to actually find the marginal distributions.
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Example 8.13. We can show that random variables are independent for the joint PDF:

fXY (x, y) =
1

384
x2y4e−y−(x/2) · 1

{
x > 0 ∧ y > 0

}
=

{
1

384
x2y4e−y−(x/2) if x > 0 ∧ y > 0

0 otherwise

Integrating this might be difficult. Instead, we can use the theorem above:

1

384
x2y4e−y−(x/2) =

(
y4e−y

384

)
1
{
y > 0

} (
x2e−x/2

)
1
{
x > 0

}
Because the PDF can be factored into two functions, one solely of X, and one solely of Y , X and Y are
independent. What about the following PDF from before?

fXY (x, y) =

{
e−y if 0 < x < y < ∞
0 else

= e−y
1
{
0 < x < y < ∞

}
Even though the PDF looks like it could be factored, we have dependence in the support and cannot
factor it. To rigorously prove that these variables are not independent, however, we need to appeal to the
definition.

Aside. Note that we can extend the concepts above to more than two dimensions. For example, we can
get a marginal distribution for a subset of n jointly distributed random variables by integrating/summing
over the remaining (i.e., we could find the marginal PDF of X1, · · · , Xk by integrating the joint PDF over
Xk+1, · · · , Xn). Similarly, we could find a conditional PDF, e.g. f(y|x1, x2, · · · , xn), which may interest us
later on in econometrics.

Definition 8.14. Let X1, · · · , Xn be random variables with joint PDF or PMF fX(x1, · · ·xn) and let
fXi

(xi) denote the marginal PDF or PMF ofXi. Then ifX1, · · · , Xn aremutually independent random
variables if for every (x1, · · · , xn)

fX(x1, · · · , xn) =
n∏

i=1

fXi
(xi).

Definition 8.15. X is jointly normally distributed with mean µ and variance Σ if

fX(x) =
1

(
√
2π)n

√
det(Σ)

e−
1
2
(x−µ)TΣ−1(x−µ)

Remark.
X ∼ N(µ,Σ) =⇒ AX+ b ∼ N(Aµ+ b, AΣAT )
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9 Multivariate Moments

Definition 9.1. Expectations of functions of random vectors are analogous to the univariate case. For
a real-valued function g(x, y) defined on the support of a bivariate random vector (X, Y ), the expectation
of g(X, Y ) is

E
[
g(X, Y )

]
=

∑
x∈Range(X)

∑
y∈Range(Y )

g(x, y)fXY (x, y) if (X, Y ) is discrete

E
[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fXY (x, y) dx dy if (X, Y ) is cotinuous

Definition 9.2. Let Y conditional on X = x follow the distribution fY |X(y|x). If g(Y ) is a real-valued
function of Y , then the conditional expectation of g(Y ) given that X = x is given by

E
[
g(Y )|X = x

]
=

∑
y∈Range(Y )

g(y)fY |X(y|x)dy if Y is discrete

E
[
g(Y )|X = x

]
=

∫ ∞

−∞
g(y)fY |X(y|x)dy if Y is continuous

Aside. Note that E[Y |X = x] is a value, i.e., the mean of Y given that we observe X = x. We also
frequently use the conditional expectation E[Y |X], which is a random variable – we don’t know what the
mean is until we know the value of X.

Remark Assume that Range(X) = {x1, x2, · · · , xJ}. If E|Y | < ∞, then

E(Y |X) =
J∑

j=1

E(Y |X = xj)1{X = xj}

Theorem 9.3. Conditional Expectation Function Decomposition
If E|Y | < ∞, then

ε = Y − E(Y |X)

Theorem 9.4. Law of Iterated Expectations.
If E |Y | < ∞, then for any random vector X,

E
[
Y
]
= E

[
E
[
Y |X

]]
.

If E |Y | < ∞, then for any random vector X1,X2,

E
[
Y |X1

]
= E

[
E
[
Y |X1,X2

]
| X1

]
.

Theorem 9.5. Conditioning Theorem. If E |Y | < ∞, then for any random vector X,

E
[
g(X)Y |X

]
= g(X)E

[
Y |X

]
In addition, if E |g(X)Y | < ∞, then

E
[
g(X)Y

]
= E

[
g(X)E

[
Y |X

]]
.
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Aside. From CEF decomposition, we have

E(ε|X) = 0.

Definition 9.6. Given the conditions above, the conditional variance of Y given X = x

Var
[
Y |X = x

]
= E

[
Y 2|X = x

]
− E

[
Y |X = x

]2
Definition 9.7. The covariance of X and Y is the number defined by

Cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
Aside. Note that we frequently employ a simpler formula, analogous to our alternative formula for the
univariate variance:

Cov(X, Y ) = E
[
XY

]
− E

[
X
]
E
[
Y
]

Aside. From CEF decomposition, for any real-valued function h : Range(X) → R,

Cov
(
ε, h(X)

)
= 0

Definition 9.8. The correlation of X and Y is the number defined by

ρXY =
Cov(X, Y )

σXσY

.

Aside. Note that the correlation is always between −1 and 1 and is the “unitless” version of the covariance,
where ρ = −1 and ρ = 1 represent perfect linear relationships between X and Y . Note that correlations
only measure linear relationships.

Theorem 9.9. If X and Y are any two random variables and a and b are any two constants, then

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).

Theorem 9.10. If X and Y are independent random variables, then the following are satisfied:

1. If g(x) is a function only of x and h(y) is a function only of y, then

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E
[
h(Y )

]
.

2. Cov(X, Y ) = 0.

Aside. Note that independence implies these conditions hold, but not the other way around. Pay particular
attention to the fact that Cov(X, Y ) = 0 does not imply independence.

Definition 9.11. The conditional covariance of Y and Z given X = x is the number defined by

Cov(Y, Z|X = x) = E
[(

Y − E(Y |X = x)
)(

Z − E(Z|X = x)
)
| X = x

]
Aside. Covariance Decomposition

Cov(Y, Z|X) = E [Y Z | X]− E [Y | X]E [Z | X]

E
[
Cov(Y, Z|X)

]
= E(Y Z)− E

(
E [Y | X]E [Z | X]

)
Cov

(
E [Y | X] ,E [Z | X]

)
= E

(
E [Y | X]E [Z | X]

)
− E(Y )E(Z)

E
[
Cov(Y, Z|X)

]
= E(Y Z)− E(Y )E(Z)− Cov

(
E [Y | X] ,E [Z | X]

)
Cov(Y, Z) = Cov

(
E [Y | X] ,E [Z | X]

)
+ E

[
Cov(Y, Z|X)

]
Aside. Variance Decomposition

V ar(Y ) = V ar
(
E[Y |X]

)
+ E

[
V ar(Y |X)

]
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Aside.

1. X, Y normal and Cov(X, Y ) = 0 ↛ X ⊥⊥ Y
(Counter Example) X ∼ N(0, 1), PZ(Z = 1) = PZ(Z = −1) = 1

2
, and X,Z independent. Define

Y := XZ. Then X and Y are not independent.

Check Y ∼ N(0, 1).

PY (Y ≤ y) = PY (Y ≤ y|Z = 1)PZ(Z = 1) + PY (Y ≤ y|Z = −1)PZ(Z = −1)

= PX(X ≤ y) · 1
2
+ PX(X ≥ −y) · 1

2

= Φ(y)
1

2
+ Φ(+y)

1

2
= Φ(y).

Check Cov(X, Y ) = 0.

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X2Z]− E[X2]E[Z] = 0.

2. E[U |X] = E[U ] ↛ X ⊥⊥ U
(Counter Example) X, ϵ ∼ N(0, 1), X ⊥⊥ ϵ, U = ϵX, U |X ∼ N(0, X2)

3. X, Y joint normal and Cov(X, Y ) = 0 ⇐⇒ X ⊥⊥ Y

4. E(Y |X) = E(Y ) =⇒ Cov(X, Y ) = 0

Proof.

Cov(X,Y ) = E
[(
X − E(X)

)(
Y − E(Y )

)]
= E

[
E
[(
X − E(X)

)(
Y − E(Y )

)
| X

]]

= E

[(
X − E(X)

)
E
[(
Y − E(Y )

)
| X

]]
= E

[(
X − E(X)

)(
E(Y |X)− E(Y )

)]
= 0
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