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1 Random Samples

Definition 1.1. The random variables X1, · · · , Xn are called a random sample of size n from the
population fX(x) ifX1, · · ·Xn are mutually independent random variables and the marginal PDF (or PMF)
of each Xi is the same fX(x). Alternatively, we say that X1, · · · , Xn are independent and identically
distributed (or i.i.d.).

Definition 1.2. From our probability sections, recall that the joint PDF (or PMF) of a random sample
X1, · · · , Xn is given by

fX(x) = fX(x1, · · · , xn) =
n∏

i=1

fX(xi)

Example 1.3. Suppose a coin flip lands on heads with probability p. If we flip a coin n times, we can
find the joint distribution be first defining the individual RV and PMF:

Xi =

{
1 if heads

0 if tails
(defining the RV)

fX(xi) =

{
pxi(1− p)1−xi if xi ∈ {0, 1}
0 else

(the PMF of Xi)

Then the joint distributions is:

fX(x1, · · · , xn) =
n∏

i=1

pxi(1− p)1−xi = p
∑

xi(1− p)n−
∑

xi , xi ∈ {0, 1} for i = 1, · · ·n

For the rest of math camp, we’ll be assuming that we’re working with a random sample. However, in
reality, you’ll virtually never see a random sample with real data. Many of the results and principles
we use here, however, will still hold with somewhat weaker assumptions. You’ll touch on the weaker
assumptions come winter quarter (Econ 241B).

∗This lecture note is for personal use only and is not intended for reproduction, distribution, or citation.
†This lecture note was originally written by James Banovetz.
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2 Statistics

Definition 2.1. Let X1, · · · , Xn be a random sample. Let T (X1, · · · , Xn) be a real-valued or vector valued
function. Then the random variable Yn = T (X1, · · · , Xn) is a statistic.

Example 2.2. The most common statistic we see is the sample mean:

X̄n =
1

n

n∑
i=1

Xi

Another extremely common statistic is the sample variance:

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄)2.

Note that there are infinitely many statistics that one could come up with, including trivial statistics like
X1 or X1, · · · , Xn, i.e., the whole sample itself. However, we choose and discuss a few notable statistics
such as the sample mean, because they are evaluated to be better than other statistics that we can use.
Can you think of reasons why some statistics could be better than others?

Definition 2.3. Suppose we have a statistic Yn = T (X1, · · · , Xn). Then the probability distribution of
the statistic Yn is called the sampling distribution of Yn.

Example 2.4. Recall the distribution of coin flips from before. Suppose we’re interested in the sum,
Yn =

∑n
i=1Xi (i.e., the number of heads observed). Intuitively, for a particular observed sample x1, · · · , xn

that produces y =
∑n

i=1 xi, the probability of the sample is

p
∑

xi(1− p)n−
∑

xi = py(1− p)n−y

There are potentially many different samples however, that would produce y =
∑n

i=1 xi. In fact, there are(
n
y

)
(i.e., n coin flips and y heads are observed). Thus, the PMF of Yn is

fYn(y) =

(
n

y

)
py(1− p)n−y,

which is the binomial distribution. Note that we could prove that the sum of independent Bernoulli RVs
follows a binomial distribution using MGFs:

• MGF of Bernoulli = etp+ (1− p)

• The sum of n i.i.d. random variables Xi has a MGF of (E(etx))n.
• MGF of Binomial = (pet + 1− p)n

Theorem 2.5. Let X1, · · · , Xn be i.i.d. from a distribution with mean µ and variance σ2 < ∞. Then:

• E[X̄n] = µ

• Var(X̄n) =
σ2

n

• E[S2
n] = σ2
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3 Sampling from a Normal Distribution

Definition 3.1. Here are some important distributions in hypothesis testing:

1. The chi-squared distribution with k degrees of freedom, denoted χ2
k or χ2(k), is the distribution

of a sum of the squares of k independent standard normal random variables. For example, suppose
we have indepedent, standard normal random variables Z1, . . . , Zk. Then the sum of their squares is
distributed according to the chi-squared distribution with k degrees of freedom:

Q =
k∑

i=1

Z2
i ∼ χ2

k.

Note that the chi-squared distribution takes only one parameter, which is the degrees of freedom, k,
which is the number of standard normal random variables being summed.

2. The t-distribution is the generalized distribution of the standard normal distribution. Though it
resembles the normal distribution, it has heavier tails than the standard normal distribution.1 The
t-distribution with ν degrees of freedom can be defined as the distribution of the random variable T
with

T =
Z√
V/ν

,

where Z is a standard normal random variable, V ∼ χ2
ν , and Z and V are independent.

3. The F-distribution with d1 and d2 degrees of freedom is the distribution of

F =
U1/d1
U2/d2

where U1 ∼ χ2
d1

and U2 ∼ χ2
d2

and U1 and U2 are independent.

Theorem 3.2. (CB Thm 5.3.1) Let X1, · · · , Xn be i.i.d. from a N(µ, σ2) distribution. Let X̄n = 1
n

∑
Xi

and let S2
n = 1

n−1

∑
(Xi − X̄)2. Then:

• X̄n is distributed N(µ, σ2/n)

• (n−1)S2
n

σ2 is distributed χ2
(n−1)

• X̄n and S2
n are independent

Theorem 3.3. Let X1, · · · , Xn be i.i.d. from a N(µx, σ
2
x) and Y1, · · · , Ym be i.i.d. from a N(µy, σy).

Consider the following statistics:

1.
X̄n − µ√
S2
x,n/n

=

X̄n−µ
σ/

√
n√

(n−1)S2
x,n/σ

2

n−1

∼ tn−1

2.
S2
x,n/σ

2
x

S2
y,m/σ

2
y

=

(n−1)S2
x,n/σ

2
x

n−1

(m−1)S2
y,m/σ2

y

m−1

∼ Fn−1,m−1

1The t-distribution has the following probability density function:

f(t) =

Γ

(
ν + 1

2

)
√
πν Γ

(ν
2

) (1 + t2

ν

)− ν+1
2

,

where ν is the number of degrees of freedom and Γ is the gamma function.
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4 Order Statistics

Definition 4.1. The order statistics of a random sample X1, · · · , Xn are the sample values placed in
ascending order, denoted by

X(1) ≤ X(2) ≤ X(3) ≤ · · · ≤ X(n)

X(1) is known as the sample minimum. X(n) is the sample maximum. Another common value is the
sample median:

M =

{
X((n+1)/2) if n is odd
1
2

(
X(n/2) +X(n/2+1)

)
if n is even

The median is occasionally very interesting to us, especially in the presence of outliers, skewness,
or non-normality. For example, the mean of an income distribution may not be very enlightening if
there are a small number of people who earn extremely high incomes.

Example 4.2. Suppose we have a random sample X1, · · ·Xn from a Uniform (0,1) distribution. We can
find the CDF and PDF of X(n) using the PDF and CDF of Xi:

fX(xi) =

{
1 if xi ∈ (0, 1)

0 else
FX(xi) =


0 if xi ≤ 0

xi if 0 < xi < 1

1 if xi ≥ 1

How can we find its CDF? Think about the probability that X(n) < k. If the maximum is less than k,
then every value of Xi is also less than k:

P (X(n) ≤ k) = P (X1 ≤ k,X2 ≤ k, · · · , Xn ≤ k) (by def. of the max)

= P (X1 ≤ k)P (X2 ≤ k) · · · (Xn ≤ k) (by independence)

= FX1(k)FX2(k) · · ·FXn(k) (by def. of the CDF)

=
n∏

i=1

FX(k) (by identically dist.)

= kn (plugging in the CDFs)

If we want to be complete:

FX(n)
(x) =


0 if x ≤ 0

xn if 0 < x < 1

1 if 1 ≤ x

(defining over R)

To find the PDF, we simply need to take the derivative:

fX(n)
(x) =

d

dx
FX(n)

(x) (FX(n)
(x) is differentiable)

fX(n)
(x) =

{
nxn−1 if 0 < x < 1

0 otherwise
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5 Three Crucial Concepts in Econometrics

Much of statistics is concerned with descriptive tasks that ask “what is” questions. On the other
hand, econometrics cares about causality and causal inference that answer “what if” questions.
Suppose you have found a parameter of interest that would answer the research question you had. The
following processes below are crucial steps for conducting good research in applied microeconometrics.

Definition 5.1. Given a statistical model, relating a parameter of interest to an estimand is called identi-
fication. Identification deals with the ability to uniquely determine the true values of the model parameters
from the available data and model structure. Identification is concerned with whether it is theoretically
possible to recover the true parameters from the data.

Definition 5.2. An estimand is a real number, which is a function of the probability distribution of the
random variables we will get to observe.

Y = µ+ U where E[U ] = 0 ⇒ µ = E[Y ]

Y = XTβ + U where E
(
XU

)
= 0,E

(
XXT

)
positive definite ⇒ β =

(
E
[
XXT

])−1

E
[
XY

]
Definition 5.3. Proposing an estimator for an estimand is called estimation. It is the process of deter-
mining the values of unknown parameters (e.g., coefficients in a regression model) using sample data.

Definition 5.4. An estimator is a function of random variables we will get to observe.

µ̂n =
1

n

n∑
i=1

Yi

β̂n =

(
1

n

n∑
i=1

XiX
T
i

)−1(
1

n

n∑
i=1

XiYi

)
Definition 5.5. Using an estimator to infer plausible values of an estimand is called inference. It involves
drawing conclusions about a population based on sample data.

Definition 5.6. An estimate is a realized value of the estimator given a realized sample.

Identification should logically come prior to inference. This is because if we cannot recover a parameter
when we know the population distribution, we definitely cannot recover it with a sample distribution.
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6 Point Estimation

Definition 6.1. Let X1, · · · , Xn be a sample from a population with θ1, · · · , θk parameters and let X be a
random variable with the same probability distribution as Xi’s. We define the jth population (non-central)
moment as

Mj(θ1, · · · , θk) = E[Xj]

and the jth (non-central) sample moment as

mj =
1

n

n∑
i=1

Xj
i

Then the method of moments estimator (θ̂1, · · · , θ̂k) for (θ1, · · · , θk) is the solution to the system

m1 = M1(θ̂1, · · · , θ̂k)
m2 = M2(θ̂1, · · · , θ̂k)
... =

...

mk = Mk(θ̂1, · · · , θ̂k)

That is, we set the sample moments equal to the population moments, then solve for θ1 through θk (note
that we have k equations and k unknowns). Note that when we set them equal, the θ’s become θ̂’s.

Example 6.2. Suppose we have a random sample X1, · · · , Xn from a normal distribution N(µ, σ2). Note
that E[X] = µ and E[X2] = σ2 + µ2. Then we can find the method of moments estimator (MME) by
solving the sytem:

1

n

n∑
i=1

Xi = µ̂ (first moment condition)

1

n

n∑
i=1

X2
i = σ̂2 + µ̂2 (second moment condition)

Solving this relatively trivial system:

µ̂mm = X̄n (simplifying notation)

σ̂2
mm =

(
1

n

n∑
i=1

X2
i

)
− µ̂2 (from the second cond.)

=

(
1

n

n∑
i=1

X2
i

)
− X̄2

n (plugging in for µ̂)
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Now, we can play around with some algebra:

=

(
1

n

n∑
i=1

X2
i

)
− 1

n

n∑
i=1

X̄2
n (X̄n is a “constant”)

=

(
1

n

n∑
i=1

X2
i

)
− 2

n

n∑
i=1

X̄2
n +

1

n

n∑
i=1

X̄2
n (adding zero)

=

(
1

n

n∑
i=1

X2
i

)
−
(
2X̄n

) 1
n

n∑
i=1

Xi +
1

n

n∑
i=1

X̄2
n (by def. of X̄n)

=
1

n

n∑
i=1

(
X2

i − 2X̄nXi + X̄2
n

)
(writing as a single sum)

σ̂2
mm =

1

n

n∑
i=1

(Xi − X̄n)
2 (simplifying)

Aside. While the method of moments is not used all that frequently, it is an intuitive way to begin the
construction of estimators. It also serves as the basis for generalized method of moments estimators, which
are used heavily in the field.

Definition 6.3. Let X1, · · · , Xn be a random sample with PDF (or PMF) fX(xi|θ1, · · · , θk). The likeli-
hood function is defined as

L(θ|x) = L(θ1, · · · , θk|x1, x2, · · ·xn) =
n∏

i=1

fX(xi|θ1, · · · , θk).

The likelihood function measures how well a model explains observed data by calculating the probability
of seeing that data under different parameter values of the model.

Definition 6.4. For each sample point x1, · · · , xn, let θ̂(x1, · · · , xn) be a parameter value at which L(θ|x)
attains its maximum as a function of θ, holding x1, · · · , xn fixed. A maximum likelihood estimator
(MLE) of θ based on sample X1, · · · , Xn is θ̂(X1, · · · , Xn).

Note that we’re making a methodological change here: we’re treating the values of x1, · · · , xn are
fixed, and we’re varying the values θ1, · · · , θn. Essentially, the intuition is, “assuming that our data
comes from a particular distribution, what parameters are most likely given the data we observe?”

Example 6.5. Let X1, · · · , Xn be a random sample from a N(µ, σ2) distribution. We can find the MLEs
µ̂mle and σ̂2

mle using calculus. The likelihood function is

L(µ, σ2|x) =
n∏

i=1

fX(xi|µ, σ2) (by def. of the likelihood func.)

=
n∏

i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}
(plugging in PDFs)

=

(
1√
2πσ2

)n

exp

{
−

n∑
i=1

(xi − µ)2

2σ2

}
(multiplying)
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Note that frequently, logarithmic transformations can make problems easier to solve. In the context of
MLE problems, we refere to these as log-likelihood functions, and usually denote them l(·):

l(µ, σ2|x) = −n

2
ln
(
2πσ2

)
−

n∑
i=1

(xi − µ)2

2σ2
(using a log transformation)

Differentiating with respect to our parameters:

∂l(·)
∂µ

= − 1

σ2

n∑
i=1

(xi − µ) (differentiating w.r.t µ)

∂l(·)
∂σ2

= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 (differentiating w.r.t. σ2)

The first-order conditions give us a system of two equations and two unknowns:

0 =
1

σ̂2

n∑
i=1

(xi − µ̂) (the first FOC)

0 = − n

2σ̂2
+

1

2(σ̂2)2

n∑
i=1

(xi − µ̂)2 (the second FOC)

Solving the first FOC for µ̂:

0 =
n∑

i=1

(xi − µ̂) (multiplying by −σ̂2)

0 =
n∑

i=1

xi −
n∑

i=1

µ̂ (distributing the sum)

µ̂mle =
1

n

n∑
i=1

xi (solving for µ̂)

Thus, the MLE for µ is our usual X̄. Considering the second FOC:

0 = −nσ̂2 +
n∑

i=1

(xi − µ̂)2 (multiplying by 2(σ̂2)2)

σ̂2
mle =

1

n

n∑
i=1

(xi − x̄)2 (solving for σ̂2)

Thus, the MLE for σ2 is the same as the MM estimator (this is, more or less, a coincidence).

Aside. Technically, we’d need to check second order conditions. For the first year, however, we won’t do it
unless explicitly told to do so. While calculus helps with some problems, there are quite a few distributions
of interest where we can’t use FOCs from calculus to find the MLE.

Theorem 6.6. (CB THM 2.7.10). If θ̂ is the MLE for θ, then for any function τ(θ), the MLE for τ(θ) is
τ(θ̂). This is known as the invariance property of MLEs.
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7 Evaluating Estimators

We often take estimators as given and simply try to compute them, but how do we check whether
the estimators we use are better than other estimators? There are several properties that make
estimators better than others, and the concept that we discuss frequently is the bias-variance tradeoff.
On average (in expectation), does our estimator estimate the parameter of interest, or does it over-
estimate or underestimate it? Does our estimator usually stay close to the parameter, or does it
have a wide spread? We will look into these concepts below.

Definition 7.1. The bias of a point estimator θ̂n of a parameter θ is the difference between the expected
value of θ̂n and θ:

Bias(θ̂n) = E[θ̂n]− θ

If Bias(θ̂n) = 0, then the estimator θ̂n is unbiased.

Definition 7.2. The mean squared error (MSE) of an estimator θ̂n of a parameter θ is defined as

MSE(θ̂n) = E
[
(θ̂n − θ)2

]
Alternatively, this may be stated in the form:

MSE(θ̂n) = Var(θ̂n) + Bias(θ̂n)
2

Example 7.3. Suppose we have two estimators for the parameter σ2, which are S2
n =

1

n− 1

n∑
i=1

(Xi−X̄n)
2

and σ̂2
n =

1

n

n∑
i=1

(Xi − X̄)2. Then from
1

σ2

n∑
i=1

(Xi − X̄n)
2 ∼ χ2(n− 1), we obtain the following:

E

[
1

σ2

n∑
i=1

(Xi − X̄n)
2

]
= n− 1 and Var

(
1

σ2

n∑
i=1

(Xi − X̄n)
2

)
= 2(n− 1)

E[S2
n] = σ2 and E[σ̂2

n] =
n− 1

n
σ2

Bias(S2
n) = 0 and Bias(σ̂2

n) =
1

n
σ2

Var(S2
n) =

2

n− 1
σ4 and Var(σ̂2

n) =
2(n− 1)

n2
σ4

MSE(S2
n) =

2

n− 1
σ4 and MSE(σ̂2

n) =
2n− 1

n2
σ4

σ̂2
n is biased towards zero, but it is less dispersed from its true value, σ2 compared to S2

n.

The mean-squared error is a good evaluator, because it provides a single measure of estimator quality,
evaluating the bias-variance tradeoff. We want to avoid systematically over- or under-estimating our
parameters (smaller bias), but we also want to avoid a wide spread of our estimators relative to the
parameter (smaller variance).
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8 Convergence

In this section, we’ll discuss briefly about large-sample statistics, i.e., the properties estimators have
when our sample size goes to infinity. While convergence is useful in analysis topics, we have several
other weaker forms of convergence that are extremely useful in large-sample statistics. We very often
don’t have data drawn from known, simple distributions; instead, we tend to rely on large-sample
results quite a bit in practice.

Definition 8.1. Let U1,U2, · · · be a sequence of random vectors. This sequence converges in proba-
bility to a random vector V if for any ε > 0:

lim
n→∞

P
(
||Un −V|| < ε

)
= 1.

Alternatively, we write Un
p−→ V.

Remark For convergence in probability, the individual convergence of the entries of the vector is necessary
and sufficient for their joint convergence.

Theorem 8.2. Let {X1, · · · ,Xn} be a random sample and let X be a random vector with the same
probability distribution as Xi’s. Assume that E[X] < ∞. Define X̄n = 1

n

∑n
i=1 Xi. Then for every ε > 0,

lim
n→∞

P
(
||X̄n − E[X]|| < ε

)
= 1.

That is, X̄n converges in probability to E[X]. This is known as the weak law of large numbers.

Theorem 8.3. Suppose Yn
p−→ Y and Zn

p−→ Z. Then

1. cYn
p−→ cY where c ∈ R

2. Yn + Zn
p−→ Y + Z

3. YnZn
p−→ Y Z

Definition 8.4. Let {X1, · · · ,Xn} be a random sample. Let θ̂n(X1, · · · ,Xn) be an estimator for the
parameter θ, based on a sample size n. Then θ̂n is a consistent estimator for θ if

θ̂n
p−→ θ

Aside. Suppose {X1, · · · , Xn} is a random sample and let X be a random variable with the same proba-
bility distribution as Xi’s with mean µ = E[X] < ∞.

1. θ̂n(X1, · · · , Xn) = X1 is unbiased for µ but not consistent.

2. θ̂n(X1, · · · , Xn) =
1
n

∑n
i=1Xi +

1
n
is biased but consistent.

Definition 8.5. A sequence of random vectorsU1,U2, · · · converges in distribution to a random vector
V if for any x ∈ Rk at which the function x → P (V ≤ x) is continuous,

lim
n→∞

P
(
Un ≤ x

)
= P

(
V ≤ x

)
Alternatively, we say Un

d−→ V.
Remark For convergence in distribution, the individual convergence of the entries of the vector is necessary
but not sufficient for their joint convergence.
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Theorem 8.6. Central Limit Theorem
Let {X1, · · · ,Xn} be a random sample and let X be a random vector with the same probability distribution
as Xi’s. If E|XXT | < ∞,

√
n

(
1

n

n∑
i=1

Xi − E[X]

)
⇝ N(0,Σ)

where Σ = E
[
(X−E[X])(X−E[X])T

]
and ⇝ is short-hand for “distributed in the limit.” Note that from

our WLLN, 1
n

∑n
i=1Xi −E[X] will converge in probability to zero. It converges at rate

√
n, however, so by

multiplying by
√
n, we “grow” this value at the same rate it “shrinks,” thus ensuring we get a distribution

instead of a simply zero.

Theorem 8.7. Suppose that U1,U2, · · · converges in probability/distribution to a random vector V and
that h is a continuous function. Then h(U1), h(U2), · · · converges in probability/distribution to h(V). This
is known as the continuous mapping theorem.

In the first-year sequence, you’ll learn theorems and tools that discuss how convergence properties hold
or change when two sequences interact with each other, such as Slutsky Theorem and Delta Method. I
included them in Appendix 11.4 for your reference, but you’ll learn them in detail later.
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9 Bounded in Probability

Definition 9.1. The sequence of random variables {Xn} is said to be bounded in probability, if there
exists a constant Bε > 0 and an integer Nε such that

n ≥ Nε ⇒ P (|Xn| ≤ Bε) ≥ 1− ε

for all ε > 0.

Example 9.2. Suppose Xn ∼ N (sin(nπ/2), 1). We can see that the mean is bounded in [−1, 1]. Since it
follows the normal distribution, the amount of mass on the extremes does not grow out of control. This
is why we can intuitively know that this sequence is bounded in probability. On the other hand, suppose
Zn ∼ N (0, n). This sequence is not bounded in probability, because it has a growing standard deviation
that will eventually be bigger than Bε.

Definition 9.3. For sequences of random variables {Xn} and {Yn}, we write

1. Yn = op(Xn) if and only if Yn

Xn

p−→ 0, as n → ∞.

2. Yn = Op(Xn) if and only if Yn

Xn
is bounded in probability, as n → ∞.

Theorem 9.4. Let {Xn} be a sequence of random variables and let X be a random variable. If Xn
d−→ X,

then {Xn} is bounded in probability, i.e., Xn = Op(1).

Theorem 9.5. Let {Xn} be a sequence of random variables bounded in probability and let {Yn} be a
sequence of random variables which converge to 0 in probability. Then

XnYn
p−→ 0

1. If Xn = Op(1) and Yn = op(1), then XnYn = op(1).

2. Op(1)op(1) = op(1).

Theorem 9.6. Suppose {Yn} be a sequence of random variables bounded in probability. Suppose Xn =

op(Yn). Then Xn
p−→ 0, as n → ∞.

1. op(Op(1)) = op(1).

2. Similarly, Op(op(1)) = op(1)

Example 9.7. If
√
n(Xn − θ)

d−→ N(0, σ2), then
√
n(Xn − θ) = Op(1) and (Xn − θ) = Op(1/

√
n) = op(1)

since 1/
√
n = o(1) = op(1).

Aside. Another notation that is used to describe the limiting behavior of a function is called the Big O
notation. Big O notation is useful when analyzing algorithms for efficiency. For example, suppose you
wrote a code that performs mathematical operations T (n) = 3n2 + 6n + 5 times (think of a loop that
iterates through all elements of a vector of size n). Then as n grows, the first term (3n2) will dominate
the other term. We then write T (n) = O(n2) and say that the algorithm has order of n2 time complexity.

12



10 Hypothesis Testing

Example 10.1. Let {X1, · · · , Xn} be a random sample and let X be a random variable with the same
probability distribution as Xi’s. Assume that X ∼ N(E[X], σ2) and the variance σ2 is known.

Definition 10.2. For any event A involving random sample {X1, · · · , Xn} and/or X, let Pµ(A) denote
the probability of the event A when E[X] = µ.

P0

(
X

σ
≤ 0

)
= P

(
X − E[X]

σ
≤ 0 : E[X] = 0

)
= Φ(0) = .5

P1.96σ

(
X

σ
≤ 0

)
= P

(
X − E[X]

σ
≤ −1.96 : E[X] = 1.96σ

)
= Φ(−1.96) = .025

Definition 10.3. A test function, or decision rule, maps Rn to {0, 1}: it is the indicator function of an
event involving only {X1, · · · , Xn} and known real numbers.

Tn = 1{X1 +Xn ≥ 3} is a statistical test.

Tn = I{X1 + E[X] ≥ 3} is not a statistical test, as it involves an unknown E[X].

Definition 10.4. A statistical test is always attached to two mutually exclusive hypotheses on an estimand
of interests, µ here. A hypothesis is a set of values for that estimand. The statement being tested in a
test of statistical significance is the null hypothesis, denoted H0, and the statement that is being tested
against the null hypothesis is the alternative hypothesis, denoted H1.

H0 : µ = {0} H1 : µ = R \ {0}
H0 : µ = {0} H1 : µ = (−∞,−.12] ∪ [.12,∞)

A Tn is a decision rule to choose between µ ∈ H0 and µ ∈ H1 once the {X1, · · · , Xn} gets realized.

Reject H0

Do not rejectH0

if Tn = 1
if Tn = 0

Definition 10.5. There are two types of errors that can be made if we use such a procedure.
Type I error is when we reject the null hypothesis when it is true; Type II error is when we fail to
reject the null hypothesis when it is not true.

Definition 10.6. Let Tn be a test function for the hypothesis H0 against the alternative H1. Define:

µ 7→ Pµ

(
Tn = 1

)
.

This is power function, which gives the probability our test statistic equals one.

Level = sup
µ∈H0

Pµ(Tn = 1)

‘Level’ measures the worst case probability that Tn leads us to make a Type I error.

Power = inf
µ∈H1

Pµ(Tn = 1)

‘1− Power’ measures the worst case probability that Tn leads us to make a Type II error.

13



Example 10.7. For any α ∈ (0, 1), let

Tn(α) = 1

{∣∣∣∣√n(X̄n − E[X])

σ

∣∣∣∣ > q1−α
2

}
where Φ

(
q1−α

2

)
= 1− α

2

Then Tn(α) is a statistical test. A sampling distribution is given by

X̄n ∼ N

(
E[X],

σ2

n

)
or equivalently

√
n
(
X̄n − E[X]

)
σ

∼ N(0, 1)

Assume that n = 500 and α = .05

1. H0 : µ = {0} vs. H1 : µ = R \ {0}

• Level of T500(.05) is .05

• Power of T500(.05) is .05

(Trivial test) Is this statistical test a good test of E(Y ) = 0 versus E(Y ) ̸= 0? No. As we would
like to have small chances of making Type I error, we would like to pick up a small α. But if we do
so, our test will have a low power too, because its power is equal to α. Therefore, we will have high
chances of making a Type II error.

2. H0 : µ = {0} vs. H1 : µ = (−∞,−.12] ∪ [.12,∞)

• Level of T500(.05) is .05

• Power of T500(.05) is .8

(Power Calculation, Minimum Detectable Difference from 0) We can test H0 against H1 with 5%
probability of making a Type I error and 20% probability of making a Type II error.

Aside. Bayes Estimation.
If we have data x and parameters θ,

f(θ|x) = f(x|θ)× f(θ)

f(x)

where f(θ|x): posterior
f(x|θ): likelihood function
f(θ): prior
f(x): marginal likelihood

14



11 Appendices

11.1 Proof of Theorem

Sketch of Proof.

• X̄n ∼ (µ, σ
2

n
) from Theorem 2.5. We check the mgf of the sample mean and check whether it follows

the mgf of the normal distribution. (CB Exmp 5.2.8, p.215)

•
(n− 1)S2

n

σ2
=
∑(

Xi − X̄

σ

)2

∑(
Xi − µ

σ

)2

=
∑(

Xi − X̄n

σ
+

X̄n − µ

σ

)2

=
∑(

Xi − X̄n

σ

)2

+ 2
∑(

Xi − X̄n

σ

)(
X̄n − µ

σ

)
+
∑(

X̄n − µ

σ

)2

=
∑(

Xi − X̄n

σ

)2

+ n ·
(
X̄n − µ

σ

)2

∑(
Xi − µ

σ

)2

∼ χ2
(n), n ·

(
X̄n − µ

σ

)2

∼ χ2
(1)

∴
∑(

Xi − X̄

σ

)2

∼ χ2
(n−1)

• Applying CB Thm 4.6.12, we show that X̄n and S2 are functions of independent random vectors.

S2 =
1

n− 1

[ n∑
i=2

(Xi − X̄)

]2
+

n∑
i=2

(Xi − X̄)2


since

∑n
i=1(Xi − X̄) = 0. Therefore, S2 is the function of (X2 − X̄), · · · , (Xn − X̄). The joint pdf

of the sample X1, · · · , Xn can be rewritten as the multiplication of the pdf of X̄ and the joint pdf of
(X2 − X̄), · · · , (Xn − X̄). Therefore, X̄n and S2 are independent. (CB p.219)

11.2 Cauchy Schwartz Inequality

Given a,b ∈ Rn,

aTb = ||a|| ||b|| cos(θ)(
aTb

)2
=
(
||a||

)2 (||b||)2 (cos(θ))2(
aTb

)2 ≤ (||a||)2 (||b||)2 (cos(θ) ∈ [−1, 1])(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
(
1

n

n∑
i=1

aibi

)2

≤

(
1

n

n∑
i=1

a2i

)(
1

n

n∑
i=1

b2i

)
(Divide by n2)
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Now, let ai = Yi − E[Y ] and let bi = Zi − E[Z]. Then

Cov(Y, Z)2 ≤ Var(Y )Var(Z)

Var(Y ) ≥
[
Var(Z)

]−1

Cov(Y, Z)2

Var(Y )−
[
Var(Z)

]−1

Cov(Y, Z)2 is PSD.

11.3 Matrix Algebra



a11 + · · ·+ a1n

a21 + · · ·+ a2n

...

ak1 + · · ·+ akn


(
a11 + · · ·+ a1n a21 + · · ·+ a2n · · · ak1 + · · ·+ akn

)

=



∑n
i=1

∑n
j=1 a1ia1j

∑n
i=1

∑n
j=1 a1ia2j · · ·

∑n
i=1

∑n
j=1 a1iakj∑n

i=1

∑n
j=1 a2ia1j

∑n
i=1

∑n
j=1 a2ia2j · · ·

∑n
i=1

∑n
j=1 a2iakj

...
...

...∑n
i=1

∑n
j=1 akia1j

∑n
i=1

∑n
j=1 akia2j · · ·

∑n
i=1

∑n
j=1 akiakj



=
n∑

i=1

n∑
j=1



a1i

a2i

...

aki


(
a1j a2j · · · akj

)

11.4 Additional Theorems and Concepts

Theorem 11.1. Suppose that U1,U2, · · · converges in distribution to a random vector V and that h is
a continuous function. Then h(U1), h(U2), · · · converges in distribution to h(V). This is known as the
continuous mapping theorem.

Theorem 11.2. Slutsky Theorem

1. If Yn
d−→ Y and Zn

p−→ c where c is constant, then[
Yn

Zn

]
d−→
[
Y
c

]
16



(Slutsky lemma) Assume that Yn
d−→ Y and that Zn

p−→ c. Then it follows from continuous
mapping theorem that

(a) ZnYn
d→ cY

(b) Zn + Yn
d→ c+ Y

2. Yn
d−→ Y and Zn

d−→ Z ↛ Yn + Zn
d−→ Y + Z where everything is conformable.

3. Yn
p−→ c ⇔ Yn

d−→ c where c is a constant.

4. Yn
p−→ Y ⇒ Yn

d−→ Y

Definition 11.3. Let {X1, · · · ,Xn} be a random sample. Let θ̂n(X1, · · · ,Xn) be an estimator for the
parameter θ, based on a sample size n. Then θ̂n is a

√
n-consistent estimator for θ if

√
n (θ̂n − θ)

d−→ Z

If Z ∼ N(0,Σ), then θ̂n is said to be asymptotically normally distributed.

Theorem 11.4. Cramer-Rao Lower Bound. Let {X1, · · · , Xn} be a sample (not necessarily random)
with a joint pdf fX(x|θ) where θ ∈ Rk, and let W (X1, · · · , Xn) be an estimator satisfying “regularity”
conditions

d

dθ
E
[
W (X)

]
=

∫
Rn

∂

∂θ

[
W (X)fX(x|θ)

]
dx and Var

[
W (X)

]
< ∞

If these hold, then the following matrix is positive semi-definite.

Var(W (X))− E
[
∂

∂θ
log [fX(X|θ)] ∂

∂θT
log [fX(X|θ)]

]−1(
d

dθ
E
[
W (X)

])( d

dθT
E
[
W (X)

])
This is known as the Cramér-Rao Lower Bound. This inequality exists if the conditions hold, even
when we have a biased estimator with non-i.i.d. data.

Remark Under regularity conditions,

E
[
∂

∂θ
logfX(x|θ)

]
= 0 and Var

(
∂

∂θ
log[fX(X|θ)]

)
= E

[
∂

∂θ
log [fX(X|θ)] ∂

∂θT
log [fX(X|θ)]

]

E
[
∂

∂θ
logfX(x|θ)

]
=

∫ [
∂

∂θ
logfX(x|θ)

]
fX(x|θ)dx

=

∫
1

fX(x|θ)
∂

∂θ
fX(x|θ)fX(x|θ)dx

=

∫
∂

∂θ
fX(x|θ)dx

=
∂

∂θ

∫
fX(x|θ)dx = 1

Aside. We won’t worry too much about the conditions. The second one says that the variance of the
estimator must be finite; if it’s not, there’s not a big reason to set a lower bound on the variance anyway.
The first condition states that we need to be able to switch an integral and a derivative. This is important
theoretically, but we’ll always be able to do it in first-year econometrics.

More frequently (virtually always in the first year), we’ll be dealing with a random sample and an unbiased
estimator, which simplifies our condition.
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Theorem 11.5. Let {X1, · · · , Xn} be a random sample and let X be a random variable with the same
probability distribution as Xi’s. If E

[
W (X)

]
= θ, then

d

dθ
θ = Ik

E
[
∂

∂θ
log [fX(X|θ)] ∂

∂θT
log [fX(X|θ)]

]
=

n∑
i=1

n∑
j=1

E
[
∂

∂θ
log [fX(Xi|θ)]

∂

∂θT
log [fX(Xj|θ)]

]
= n E

[
∂

∂θ
log [fX(X|θ)] ∂

∂θT
log [fX(X|θ)]

]
= n I(θ : X)

Var(θ̂)−
(
n I(θ : X)

)−1

is PSD.

Where I(θ : X) is the Fisher information, given by:

I(θ : X) = E
[
∂

∂θ
log [fX(X|θ)] ∂

∂θT
log [fX(X|θ)]

]
Further, the Fisher information (under certain regularity conditions) can be simplified:

I(θ : X) = −E
[

∂2

∂θ∂θT
log [fX(X|θ)]

]
Aside. Asymptotic Normality of MLE.

√
n(θ̂n − θ0)

d→ N
(
0, I(θ0 : X)−1

)
Example 11.6. Let {X1, · · · , Xn} be a random sample from a N(µ, σ2) distribution, where we will assume
that µ and σ2 are unknown. Show that X̄ attains the CRLB.

Note that E[X̄] = µ

f(xi|µ) =
1√
2πσ2

exp

{
− 1

2σ2
(xi − µ)2

}
(the PDF of X)

ln
[
f(xi|µ)

]
= −1

2
ln
[
2πσ2

]
− 1

2σ2
(xi − µ)2 (taking a log transform)

∂

∂µ
ln
[
f(·)

]
=

1

σ2
(xi − µ) (differentiating w.r.t. µ)

∂2

∂µ2
ln
[
f(·)

]
= − 1

σ2
(the second derivative)

E
[
∂2

∂µ2
ln
[
f(·)

]]
= − 1

σ2
(taking the expected value)

Therefore,

CRLB =
1

−n · E
[

∂2

∂µ2 ln
[
f(·)

]] =
σ2

n

V ar(X̄) =
σ2

n
≥ σ2

n
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Definition 11.7. Given that a function g(x) has derivatives of order r (that is, the rth derivative g(r)(x)
exists), then for any constant a, the Taylor Polynomial of order r around a is

Tr(x) =
r∑

i=0

g(i)(a)

i!
(x− a)i

Theorem 11.8. √
n
(
θ̂n − θ0

)
d−→ Z

Then given a differentiable function g : Rk → Rq:

√
n
(
g(θ̂n)− g(θ0)

)
d−→ ∂g(θ0)

∂θT
Z

This is known as the Delta Method.

Aside. Asymptotic Test with MLE.

θ̂n ∈ arg max
θ∈Θ⊂Rk

L(θ : X1, · · · , Xn)

It follows from asymptotic normality of MLE that

√
n
(
θ̂n − θ0

)
d−→ N

(
0, I(θ0 : X)−1

)
and

θ̂n
p−→ θ0

1. Linear test H0 : Rθ0 = 0 where R is a q × k matrix.

√
n
(
Rθ̂n −Rθ0

)
d−→ N

(
0, R I(θ0 : X)−1RT

)
n
(
Rθ̂n −Rθ0

)T(
R I(θ̂n : X)−1RT

)−1(
Rθ̂n −Rθ0

)
d−→ χ2(q)

2. Nonlinear test H0 : g(θ0) = 0 where g : Rk → Rq is differentiable.

√
n
(
g(θ̂n)− g(θ0)

)
d−→ N

(
0,

∂g(θ0)

∂θT
I(θ0 : X)−1∂g(θ0)

∂θ

)

n

(
g(θ̂n)− g(θ0)

)T(
∂g(θ̂n)

∂θT
I(θ̂n : X)−1∂g(θ̂n)

∂θ

)−1(
g(θ̂n)− g(θ0)

)
d−→ χ2(q)

Aside. Wald Test. Let {X1, · · · ,Xn} be a random sample and let X be a random vector in Rk with the
same probability distribution as Xi’s where E[XXT ] < ∞. Then it follows from CLT that

√
n
(
X̄n − E[X]

)
d−→ N(0,Σ)

and it follows from WLLN that

Σ̂n =
1

n

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
T =

1

n

n∑
i=1

XiX
T
i − X̄nX̄

T
n

p−→ E[XXT ]− E[X]E[X]T = Σ

n
(
X̄n − E[X]

)
Σ̂−1

n

(
X̄n − E[X]

)T d−→ χ2(k)
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